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ABSTRACT

TOWARDS REAL-TIME SIMULATION OF HYPERELASTIC MATERIALS

Tiantian Liu

Ladislav Kavan

We propose a new method for physics-based simulation supporting many different types of

hyperelastic materials from mass-spring systems to three-dimensional finite element models,

pushing the performance of the simulation towards real-time. Fast simulation methods

such as Position Based Dynamics exist, but support only limited selection of materials;

even classical materials such as corotated linear elasticity and Neo-Hookean elasticity are

not supported. Simulation of these types of materials currently relies on Newton’s method,

which is slow, even with only one iteration per timestep. In this work, we start from simple

material models such as mass-spring systems or as-rigid-as-possible materials. We express

the widely used implicit Euler time integration as an energy minimization problem and

introduce auxiliary projection variables as extra unknowns. After our reformulation, the

minimization problem becomes linear in the node positions, while all the non-linear terms

are isolated in individual elements. We then extend this idea to efficiently simulate a more

general spatial discretization using finite element method. We show that our reformulation

can be interpreted as a quasi-Newton method. This insight enables very efficient simulation

of a large class of hyperelastic materials. The quasi-Newton interpretation also allows

us to leverage ideas from numerical optimization. In particular, we show that our solver

can be further accelerated using L-BFGS updates (Limited-memory Broyden-Fletcher-

Goldfarb-Shanno algorithm). Our final method is typically more than ten times faster than

one iteration of Newton’s method without compromising quality. In fact, our result is often

more accurate than the result obtained with one iteration of Newton’s method. Our method

is also easier to implement, implying reduced software development costs.
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Chapter 1

Introduction

Physics-based animation is an important tool in computer graphics even though creating

visually compelling simulations often requires a lot of patience. Waiting for results is not

an option in real-time simulations, which are necessary in applications such as computer

games and training simulators, e.g., surgery simulators. Previous methods for real-time

physics such as Position Based Dynamics [Müller et al., 2007] have been successfully used

in many applications and commercial products, despite the fact that these methods support

only a restricted set of material models.

The advantages of more general material models were nicely demonstrated in the work

of Xu et al. [2015], who proposed a new class of spline-based materials particularly suitable

for physics-based animation. Their user-friendly spline interface enables artists to easily

modify material properties in order to achieve desired animation effects. However, their

system relies on Newton’s method, which is slow, even if the number of Newton’s iterations

per frame is limited to one. Our method enables fast simulation of general hyperelastic

materials including hte spline-based materials, combining the benefits of artist-friendly

material interfaces with the advantages of fast simulation, such as rapid iterations and/or

higher resolutions.

In order to simulate the motion of deformable objects in time, we usually start from

a backward Euler time integration which can be formulated as an optimization problem
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where we minimize a multi-variate function g. Newton’s method is commonly treated as

the state-of-art numerical solution to minimize g. It minimizes g by performing descent

along direction −(∇2g)−1∇g, where ∇2g is the Hessian matrix, and ∇g is the gradient.

One problem with Newton’s method is that the Hessian ∇2g can be indefinite, in which

case Newton’s direction could erroneously increase g. This undesired behavior can be

prevented by so-called “definiteness fixes” [Nocedal and Wright, 2006, Teran et al., 2005].

While definiteness fixes require some computational overheads, the slow speed of Newton’s

method is mainly caused by the fact that the Hessian changes at every iteration, i.e., we

need to solve a new linear system for every Newton step.

The point of departure for our method is a quasi-Newton approach to minimize the

multi-variate function g. In general, quasi-Newton methods [Nocedal and Wright, 2006]

work by replacing the Hessian ∇2g with a linear operator A, where A is positive definite

and solving linear systems Ax = b is fast. The descent directions are then computed as

−A−1∇g (where the inverse is of course not explicitly evaluated, in fact, A is often not

even represented with a matrix). The trade-off is that if A is a poor approximation of the

Hessian, the quasi-Newton method may converge slowly. Unfortunately, coming up with an

effective approximation of the Hessian is not easy. We tried many previous quasi-Newton

methods, but even after boosting their performance with L-BFGS [Nocedal and Wright,

2006], we were unable to obtain an effective method for real-time physics. We start by

accelerating models with simple quadratic energy functions such as mass-spring system

and some finite element modes using local-global optimization methods. We show that this

kind of acceleration can be re-formulated as a quasi-Newton method with some remarkable

properties, in particular, the resulting Aour matrix is constant and positive definite. This

re-formulation enables us to generalize the method to simulate more general hyperelastic

materials, such as the Neo-Hookean or spline-based materials.

The quasi-Newton formulation also allows us to further improve convergence of our

solver. We propose using L-BFGS, which uses curvature information estimated from a
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certain number of previous iterates to improve the accuracy of our Hessian approxima-

tion Aour. Adding the L-BFGS Hessian updates introduces only a small computational

overhead while accelerating the convergence of our method. However, the performance of

L-BFGS highly depends on the quality of the initial Hessian approximation. With previous

quasi-Newton methods, we observed rather disappointing convergence properties. The

combination of our Hessian approximation Aour with L-BFGS is quite effective.

The L-BFGS convergence boosting is compatible with our first contribution, i.e., fast

simulation of complex non-linear materials. Specifically, we can simulate any materials

satisfying the Valanis-Landel assumption [Valanis and Landel, 1967] which includes many

classical materials, such as St. Venant-Kirchhoff, Neo-Hookean, Mooney-Rivlin, and

also the recently proposed spline-based materials [Xu et al., 2015]. In summary, our

final method achieves fast convergence while being able to simulate a large variety of

hyperelastic materials.
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Chapter 2

Related Work

2.1 Material Models

The work of Terzopoulos et al. [1987] pioneered physically based animation, an indispens-

able tool in feature animation and visual effects nowadays. Models derived from continuum

mechanics plays an important role in simulating deformable objects. The key idea of most

models is to represent the resistance of any deformable object as a scalar energy function,

whose spatial derivative is the opposite direction of the elastic force.

Mass-spring systems are conceptually the simplest way to simulate deformations. It

is commonly used in real-time applications, where in contrast to scientific computing, a

highly accurate model is not always the concern. As a result, mass-spring systems are

widely used to simulate one and two-dimensional structures such as hair [Selle et al.,

2008] and cloth [Choi and Ko, 2005], and can be sometimes extended to simulate elastic

solids [Teschner et al., 2004].

Finite Element Methods (FEM) has been used in computer graphics too, mostly in

applications where accuracy is strictly needed. A linear model is the simplest FEM model,

but it suffers from treating rotation as deformation too, thus it can be only applied in

small deformation simulations. Corotated linear elasticity models mitigate this problem

by extracting the rotation from deformation using polar decomposition [Chao et al., 2010,
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Müller and Gross, 2004]. Nonlinear models such as St. Venant-Kirchhoff, Neo-Hookean

or Mooney-Rivlin material models are widely used in many works too. One can refer

to the SIGGRAPH course note [Sifakis and Barbic, 2012] for a more general survey for

material models derived from continuum mechanics. In order to resolve the unwanted

numerical issues caused by degenerated or even inverted elements, Irving et al. [2004]

introduced invertible finite element methods that can recover from inversions. Recently,

Xu et al. [2015] showed that all corotated linear elasticity, St. Venant-Kirchhoff, and

Neo-Hookean materials satisfy the Valanis-Landel assumption [Valanis and Landel, 1967]

and can be therefore represented in one unified representation based on principal stretches.

They further proposed new “spline based materials” which can be easily controlled by

artists to achieve desired animation effects.

Instead of using elastic forces and potentials to simulate deformable objects, constraint-

based approaches play an important role in simulating hard constraints such as inextensible

cloth [Goldenthal et al., 2007] or posing specific limits to deformations using strain limiting

[Narain et al., 2012, Thomaszewski et al., 2009]. Position Based Dynamics [Müller et al.,

2007] also models the material as infinitely stiff constraints and solves the Karush-Kuhn-

Tucker (KKT) system using nonlinear iterative solvers. For some materials whose potential

energy has a special quadratic form, a compliant constraint based approach can be also

used to simulate both elastic forces and hard constraints in one unified framework [Macklin

et al., 2016, Tournier et al., 2015].

2.2 Time Integration Methods

Regardless of whether one employs a mass-spring system or another method based on

continuum mechanics, some numerical time integration technique is necessary to simulate

the system dynamics. The most straightforward integration methods are explicit, such as

explicit Euler [Press, 2007]. For the purposes of physics-based animation, where perfor-

mance concerns dictate large timesteps, explicit methods are often not sufficiently robust
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and experience stability problems. Seminal works [Baraff and Witkin, 1998, Terzopou-

los et al., 1987] introduced the implicit Euler method which offers robustness for large

timesteps. Explicit Euler can not stably handle stiff simulation with large timesteps because

it constantly injects energy into the simulation, while implicit Euler has its integration

error as excessive numerical damping, rapidly removing high-frequency motions from

the simulation. Symplectic integrators [Kharevych et al., 2006, Stern and Desbrun, 2006]

are known for their long-term energy conservation behaviors. However, those symplectic

integrators are not guaranteed to behave stably for all simulations. Implicit Euler integration

continues to be one of the most popular choices in applications physics-based animation

where robustness is more important and numerical damping is less concerned.

2.3 Numerical Solvers

Regardless of the particular flavor and formulation of implicit integration, Newton’s method

remains the computational workhorse for solving the system of non-linear equations. Semi-

implicit integration can be seen as the result of applying one Newton iteration to implicit

integration as well [Baraff and Witkin, 1998, Tournier et al., 2015]. Based on the observation

that most elastic forces are conservative, Martin et al. [2011] anti-differentiate the equations

of motion in implicit Euler, and convert the original non-linear root finding problem to a

non-linear minimization problem which can be solved with Newton’s method more robustly.

But still, a robust implementation of Newton’s method requires lots of precautions such

as careful line search [Boyd and Vandenberghe, 2004] and definiteness fix for indefinite

Hessians [Irving et al., 2004]. In spite of those special treatments, the performance of

Newton’s method is already bad because it requires a Hessian matrix evaluation and a linear

system solve for every iteration.

Multi-grid methods represent another approach to accelerate physics-based simulations

[Georgii and Westermann, 2006, McAdams et al., 2011, Müller, 2008, Tamstorf et al., 2015,

Wang et al., 2010]. Multi-grid methods are attractive especially for highly detailed meshes
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where sparse direct solvers become hindered by high memory requirements. However,

constructing multi-resolution data structures and picking suitable parameters is not a trivial

task. Another way to speed up FEM is by using subspace simulation where the nodal

degrees of freedom are replaced with a low-dimensional linear subspace [An et al., 2008,

Barbič and James, 2005, Li et al., 2014]. These methods can be very efficient; however,

deformations that were not accounted for during the subspace construction may not be well

represented. A variety of approaches have been designed to address this limitation while

trying to preserve efficiency [Harmon and Zorin, 2013, Teng et al., 2014, 2015]. Simulating

at coarser resolutions is also possible, while crafting special data-driven materials which

avoid the loss of accuracy typically associated with lower resolutions [Chen et al., 2015].

Quasi-Newton methods is another way to accelerate Newton’s method. A quasi-Newton

method employs approximate Hessians, trading fast linear solve with suboptimal descent

direction. It has been studied long time before real-time simulations were feasible. Several

research papers have been done to accelerate Newton’s method in FEM simulations by

updating the Hessian approximation only once every frame [Bathe and Cimento, 1980, Fish

et al., 1995]. However, even one Hessian update is usually so computationally expensive

that can not fit into the computing time limit of real-time applications. Deuflhard [2011]

minimizes the number of Hessian factorizations by carefully scheduled Hessian updates.

But the update rate will heavily depend on the deformation. A good Hessian approximation

suitable for real-time applications should be easy to refactorize or capable of prefactoriza-

tion. One straightforward constant approximation which is good for prefactorization is

the Hessian evaluated at the rest-pose (undeformed configuration). The rest-pose Hessian

is positive semi-definite and its use at any configuration enables pre-factorization. Unfor-

tunately, the actual Hessian of deformed configurations is often very different from the

rest-pose Hessian and this approximation is therefore not satisfactory for larger deforma-

tions. To improve upon this, Müller et al. [2002] introduced per-vertex “stiffness warping”

of the rest-pose Hessian, which is more accurate and can still leverage pre-factorized

rest-pose Hessian. Unfortunately, the per-vertex stiffness warping approach can introduce
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non-physical ghost forces which violate momentum conservation and can lead to insta-

bilities [Müller and Gross, 2004]. This problem was addressed by per-element stiffness

warping [Müller and Gross, 2004] which avoids the ghost forces but, unfortunately, the

per-element-warped stiffness matrices need to be re-factorized, introducing computational

overheads which are prohibitive in real-time simulation. For corotated elasticity, Hecht et

al. [2012] proposed an improved method which can reuse previously computed Hessian

factorization. Specifically, the sparse Cholesky factors are updated only when necessary

and also only where necessary. This spatio-temporal staging of Cholesky updates improves

run-time performance, however, the Cholesky updates are still costly and their scheduling

can be problematic especially in real-time applications, which require approximately con-

stant per-frame computing costs. Also, the frequency of Cholesky updates depends on the

simulation: fast motion with large deformations will require more frequent updates and thus

more computation, or risking ghost forces and potential instabilities. Neither is an option

in real-time simulators. Quasi-Newton methods have gained their popularity in geometry

processing recently. A Laplacian matrix of the mesh can be used to approximate Hessian

matrices in geometry processing problems to reduce either the per-iteration computational

cost [Kovalsky et al., 2016] or even the number of required iterations [Rabinovich et al.,

2017].

Fast simulations of deformable objects using shape matching [Müller et al., 2005,

Rivers and James, 2007] paved the way towards more general Position Based Dynamics

(PBD) methods [Müller et al., 2007, Stam, 2009]. The past decade witnessed rapid

development of Position Based methods, including improvements of the convergence [Kim

et al., 2012, Müller, 2008], robust simulation of elastic models [Müller and Chentanez,

2011], generalization to fluids [Macklin and Müller, 2013] and continuum-based materials

[Bender et al., 2014a, Müller et al., 2014], unified solvers including multiple phases of

matter [Macklin et al., 2014], and most recently, methods to avoid element inversion

[Müller et al., 2015]. We refer to a recent survey [Bender et al., 2014b] for a more detailed

summary of Position Based methods. As a fast treatment to deliver visually plausible
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results of deformable body simulations, Position Based Dynamics is widely used in game

engines such as NVIDIA PhysX, Havok Cloth, and Bullet, but rarely used in applications

where material properties need to be carefully handled. Macklin et al. [2016] revealed the

relationship between PBD and constraint-based dynamics. Their eXtended Position Based

Dynamics (XPBD) framework is able to converge towards the actual material properties

given a certain type of elastic material, such as mass-spring systems.
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Chapter 3

Background

In this chapter, we discuss the basis to simulate hyperelastic materials. We start from

the definition of hyperelasticity to the needed spatial and temporal discretization for a

simulation. We will also discuss basic time integration methods.

3.1 Hyperelasticity

Elastic objects tend to recover themselves to their undeformed shapes. In continuum

mechanics, deformation is usually described as a map φ between the undeformed pose (or

reference pose) X in Ω and a deformed pose x in Ωt. The relationship between the “current

configuration” x and the “initial configuration” X is captured by this deformation map

φ : Rd1 → Rd2: x = φ(X), where d1 and d2 are the dimensions of the simulated domain.

For example, if the object is performing a rigid body motion, we will have:

x = R(t)X + b(t) (3.1)

where R is a rotation matrix and b is a translation vector, both R and b are dependent on

time t. If an 2D object is being stretched in its first dimension with a constant rate v, we

will again have: x(1)
x(2)

 =

vt 0

0 1

X(1)

X(2)

 (3.2)

10



where the super script (1) and (2) denotes for the first and second coordinates.

An important physical quantity is the Jacobian matrix of the deformation map, called

deformation gradient F ∈ Rd2×d1: Fi,j = ∂φi(X)/∂Xj , i = 1, ..., d2, j = 1, ..., d1. In the

rigid body motion case and the stretching case we talked before, the deformation gradient

F will be R(t) and [vt 0; 0 1] respectively. Intuitively speaking, the deformation

gradient can be seen as a linear relationship between the reference shape and the current

shape. For an arbitrary point and its infinitesimal neighbors, a deformation map φ can be

approximated closely using this linear relationship:

x = φ(X) ≈ FX + b (3.3)

For elastic materials, the internal force that resists deformation is dependent on the

deformation map φ and time t. Based on Eq. 3.3, this can be understood as that the force

is dependent on the deformation gradient F for every point of an object and time t. To

further simply our problem, we introduce another characteristic property: hyperelasticity.

The elastic force of a hyperelastic material only depends on the current state but not the

prior history to get to that state. For example, as shown in Figure 3.1, the final states of the

elastic blobs in both configurations will have the same elastic force, regardless of how they

get to their final states. This property is highly related to the fact that the elastic force is

conservative, which is to say that the work done by the elastic force in moving a particle

between two states is independent of the taken path.

(a) (b)

Figure 3.1: Demonstration of hyperelasticity. In configuration (a), an elastic blob is

compressed in the vertical direction first and then compressed in the horizontal direction.

In configuration (b), the same blob is compressed in horizontal direction first and vertical

direction last. Both configurations end up with the same final state.

11



Based on the assumption of hyperelasticity, we can treat the elastic force as the negative

gradient direction of its corresponding elastic energy. Since the resistance of deformation

can be very different for each part of an object, the total elastic energy of it can thus be

defined as an integral over the elastic energy density function over its entire domain Ω:

E(x) = E(φ;X) =

∫
Ω

Ψ(φ;X)dX (3.4)

where Ψ(φ;X) stands for the elastic energy density close to reference shape point X under

the deformation map φ. Based on the approximation (Eq. 3.3) we had for local deformation

maps, we can further simply the energy representation as:

E(x) = E(F;X) =

∫
Ω

Ψ(F(X))dX (3.5)

3.2 Strain Measures and Material Models

One might think once the relationship between the elastic energy and the deformation

gradient is explicitly presented, we can start simulating deformable solids easily. This

is true. However, defining an explicit relationship between them is not a straightforward

work. For example, inspired by a simple system such as a mass-spring system, if we want a

zero elastic energy corresponding to a minimally deformed state, we can define the energy

density function to something like:

Ψ(F) =
1

2
||F− I||2 (3.6)

where I stands for an identity matrix with the same dimensionality of F. This is an intuitive

definition because the energy will be zeroed out once the object goes back to its reference

configuration. But there are two problems with this definition. First, this energy is not

rotational invariant, it penalizes rigid body transformation which should not happen in

practice. Second, depending on the dimensionality of the domain of the reference shape

and the current shape, the deformation gradient matrix F might not even be a square matrix,

in which case the Identity matrix I is hard to define. The reason why using the deformation

12



gradient F as the measurement for deformation is that it can not be directly linked to a

quantitative indicator that can describe how severe the deformation is. Ideally, we want a

rotational-invariant descriptor to tell us the severity of a given deformation, this is descriptor

is usually called strain. In mechanical science, the relationship between the energy density

Ψ and the strain (often denoted as ε) can be described as:

Ψ(ε) = µ||ε||2F +
λ

2
tr(ε)2 (3.7)

where µ is the Lamé’s second parameter which represents the resistance for shearing,

it is also sometimes referred as the shear modulus G; λ is the Lamé’s first parameter

which stands for the resistance for change of volume. Other elastic moduli can also be

represented as the combination of these two parameters. For instance, Young’s Modulus

can be represented as EY oung = µ(3λ + 2µ)/(λ + µ), the subscript “Young” is used

to distinguish Young’s Modulus from the energy representation E(x) we used before.

Intuitively speaking, the Frobenius norm of the strain ε should represent how much the

material is sheared or stretched, and the trace of ε is a nice linear approximation of the

change of volume.

Depending on different measurements of the strain, different types of materials can be

defined. For example, linear elasticity can be defined with a small strain tensor εs:

εs =
1

2
(F + FT)− I (3.8)

This tensor is not rotational invariant either, but it is not biased towards one rotation

direction. It works well only when the deformation is small enough around its reference

configuration.

If we want to measure the strain in a rotational invariant way, we can use the Green

strain tensor εG:

εG =
1

2
(FTF− I) (3.9)

Substituting this Green strain tensor into Eq. 3.7 will give us the St. Venant-Kirchhoff

model. To explain the reason why this model is rotational invariant, we can decompose
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the deformation gradient F into a rotation matrix R and a symmetric matrix S using

polar decomposition F = RS. Therefore the Green strain tensor will ignore the rotation

component of the deformation gradient automatically because it will be εG = 1
2
(S2 − I)

after we substitute the polar decomposition into Eq. 3.9. We can intuitively explain the

polar decomposition in a 2D FEM simulation: the rotation matrix R has only one degree

of freedom for rotation, while the symmetric matrix S has the rest of all three degrees of

freedom for two stretching modes on the principal axes and one shearing mode. This strain

tensor automatically removes the degree(s) of freedom from rotation without explicitly

performing the polar decomposition. The only problem is that this tensor is invariant not

only to rotation, but to any orthogonal matrix including reflection. If we invert the entire

object like flipping an umbrella, the Green strain tensor will still be zero. Numerically

speaking, this is caused by multiple minima of the energy density function of the St. Venant

Kirchhoff material. In practice, this will cause inversion of a simulated object easily.

Another possibility is to use corotated linear elasticity that corresponds to the following

strain tensor:

εc = S− I (3.10)

where the S is exactly the symmetric component of the deformation gradient we get from

polar decomposition, which encodes all the shearing and stretching information. The

idea of corotated linear elasticity is trying to mimic the behavior of linear elasticity as

much as possible with an extra safeguard of removing the rotational component of the

deformation gradient, enabling the rotational invariant property of the strain measurement.

For more constitutive material models used in computer graphics applications, one can

refer to Chapter 3 of the SIGGRAPH course note [Sifakis and Barbic, 2012, Part 1].

3.3 Spatial Discretization

In computer graphics applications, we are not able to simulate an entire elastic body as a

continuous object, we instead discretize it first and simulate a discrete version of it.
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Figure 3.2: Discretization of a deformable blob.

As shown in Figure 3.2, given a continuous planar object, we first tessellate it into

triangles. We then distribute the total mass of the elastic object to the individual vertices

(shown as blue dots) of the triangles. And we use the position and velocity of those vertices

to represent the motion of the entire mesh. For a volumetric deformable object, we similarly

tessellate it into tetrahedra, and use the vertices of each tetrahedron to represent the whole

mesh too. We usually call a discretized triangle or tetrahedron an element of the mesh,

since they are the basic building blocks of a mesh now.

Once the tessellation is done, we use a linear finite element method to simplify our

problem. The key assumption of linear FEM is to rewrite the deformation map as a

piecewise linear function over the elements, based on the definition of deformation gradient,

for each element Ei, we can define a linear deformation map of it as:

φ(X) = FiX + bi (3.11)

where Fi is a constant deformation gradient and bi is a constant translation vector. Given

this assumption, we can further rewrite the energy of the system as:

E(x) =

∫
Ω

Ψ(F(X,x))dX = ΣEi

∫
ΩEi

Ψ(Fi(x))dX = ΣEi
wiΨ(Fi(x)) (3.12)

where wi =
∫
ΩEi

dX represents for the area or volume of the element Ei in its reference

shape. In that case, as long as we can compute the deformation gradient for all the elements,

the total elastic energy of the system can be uniquely computed too.
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3D Tetrahedral and 2D triangle elements. To simulate a volumetric object in 3D,

linear tetrahedral elements are most commonly used. Similarly, linear triangular elements

are often used to simulate planar objects in 2D. Let us consider one tetrahedral element

whose reference vertices are X1, X2, X3, X4 and current vertices are x1, x2, x3, x4, as

shown in Figure 3.3.

X1

X2

X3

X4

x1

x2
x3

x4

Figure 3.3: One linear tetrahedron being deformed from its reference shape (left) to the

current shape (right)

According to the linear assumption of the deformation map for this linear element, we

have xi = FXi + b, i = 1, ..., 4. After subtracting the last equation and some rearranging,

we will get:[
x1 − x4 x2 − x4 x3 − x4

]
= F

[
X1 −X4 X2 −X4 X3 −X4

]
(3.13)

Ds = FDm (3.14)

where Ds is a 3× 3 matrix standing for the current shape matrix and Dm stands for the

reference shape matrix. If we assume the reference shape is not degenerated with zero-

volume, the determinant of Dm is non-zero. We can further define the deformation gradient

of a linear tetrahedral element as:

F = DsD
−1
m (3.15)

The deformation gradient for a triangular element moving in a 2D space can be defined

exactly the same way where Ds and Dm are both 2× 2 matrices then.
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3D triangle elements. Sometimes we want to simulate a volume-less thin sheet moving

in a 3D space, such as a piece of cloth or an aluminum coil. Those surfaces are usually

represented as 2D triangle meshes. In that case the deformation map φ is a map from R2 to

R3, and therefore the deformation gradient is going to be a 3× 2 matrix represented the

same as DsD
−1
m where Ds in this case is a 3× 2 matrix and Dm is a 2× 2 matrix.

3D spring elements. There is another way to discretize elastic components in a

simulation. Instead of using tetrahedra or triangles or codimensional planes, one can

always discretize an elastic body into a mass-spring system. As shown in Figure 3.2,

we can discretize the entire object into vertices represented as blue dots and springs

represented as red lines, ignoring the triangles in between. Apparently, in a reference

shape, all springs are in their rest lengths, achieving a zero-elastic-energy state. Note

that it is not always true to speak the other way around, because when all springs are in

their rest lengths, the mesh itself might not recover to its reference shape. This mass-

spring representation is useful in cloth simulation because one can argue that a piece of

cloth is made of strings in warp and weft directions, but not made of triangular planes.

In order to describe deformation and define a proper energy

to the mass-spring system, we can also understand a spring as

a bar that can only be deformed in one dimension as shown

in the right figure. In this case, the deformation gradient F

of the spring can be as well defined as F = DsD
−1
m where

now Ds is a 3× 1 vector Ds = x1 − x2 and Dm = X1 −X2

is a scalar, leaving F to be a 3 × 1 vector too. Inspired by

corotated linear elasticity, we can define the strain tensor of this bar as:

εbar = ||F|| − 1 (3.16)

where the norm of F stands for the only singular value of the 3× 1 vector F, indicating

the ratio of stretching or compression of the current state, and ε therefore represents how

severe the bar is deformed in the dimension where it is allowed to deform. We can further

substitute this strain tensor into Eq. 3.7, with the assumption that the bar has only one
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degree of freedom and can not resist any volume change, yielding zero λ value. We can

write the final energy density of the bar as Ψ(x) = µ(||F(x)|| − 1)2, where the relationship

between F and x is already known as F = (x1 − x2)/l0 with l0 = Dm representing the

rest length. Assuming the cross-section area of the bar is A0, we can write the total elastic

energy of the bar as:

Ebar(x) = A0l0µ(||
x1 − x2

l0
|| − 1)2 =

A0µ

l0
(||x1 − x2|| − l0)2 (3.17)

Giving the relationship between Hooke’s spring stiffness and the Lamé’s parameters:

k = A0EY oung/l0 = 2A0µ/l0, we can rewrite the bar energy using the representation of

Hooke’s Law:

Ebar(x) =
A0µ

l0
(||x1 − x2|| − l0)2 =

1

2
k(||x1 − x2|| − l0)2 (3.18)

This observation indicates that the energy representation of a mass-spring system

following Hooke’s Law is also a valid finite element discretization, allowing us to use this

simple discretization to simulate complicated deformable objects.

3.4 Temporal Discretization

Simulation is hard because the main job it works on is to predict the future. To be more

specific, given the information of the reference shape and existing history of a sequence

x0 xn

tnt0
t

tn+1

xn+1

h

Figure 3.4: A sequence of deformed states along the time axis. The discrete knots on the

axis are frames; the length between two adjacent frames on the time axis is the timestep

size h.
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of deformed shapes along the temporal axis, we want to predict the state of a deformable

object in the next timestep. As shown in Figure 3.4, when getting the current positions xn

and possibly the current velocities vn of the vertices of a deformable object, we need to

predict the states after a certain timestep h. To make the notation clear, from now on, we

will use the subscript of the states as frame indices. For instance, x0 stands for the positions

at the initial state, vn stands for the velocities at the current state tn, and xn+1 stands for

the positions at an unknown state after next timestep is taken.

In a continuous time integration scheme, the equations of motion can be represented as

follows:

xn+1 = xn +

∫ h

0

v(t)dt (3.19)

vn+1 = vn +

∫ h

0

M−1(fint(x(t) + fext)dt (3.20)

where M is the mass matrix – typically diagonally lumped, fint is a state dependent internal

force caused by elasticity, fext is a state independent force such as gravity, and t is the time

variable that goes from 0 to timestep size h, x(0) means the position at the current state xn

and x(h) means the position at the predicted state xn+1. Newton’s second law of motion is

used in Eq. 3.20, indicating M−1(fint(x(t) + fext) is the acceleration of an object given its

current position.

Evaluating the integrals in Eq. 3.19 and Eq. 3.20 exactly is almost impossible for most

reasonably interesting materials. Even in a toy 1D case as shown in Figure 3.5, evaluating

the integral exactly means computing the exact purple area of figure (a), which lacks an

analytical solution for most 1D functions. What we usually do is to estimate those integrals

using numerical approximations. Depending on different approximations of the integrals in

Eq. 3.19 and Eq. 3.20, there are generally two schemes for the time integration: explicit

time integration and implicit time integration.
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f(t)

t
0 h

f(t)

t
0 h

(a) (b)

t
0 h

f(t) f(t)

t
0 hh/2

(c) (d)

Figure 3.5: Different time integration schemes for a toy 1D case. The area colored in purple

in (a) is the exact integral of
∫ h
0
f(t)dt; the red area in (b) is an approximated integral using

forward Euler; the blue area in (c) is an approximated integral using backward Euler; the

green area in (d) is an approximated integral using implicit midpoint.

3.4.1 Explicit Time Integration Methods

Explicit time integration methods approximate the integrals in Eq. 3.19 and Eq. 3.20 using

explicit formula. One straightforward idea is to use position and velocity values at the

current state as a constant approximation, assuming they do not change too much during

one timestep. It can be illustrated as figure (b) in Figure 3.5. This scheme is usually referred

as forward Euler or explicit Euler which has the following update rules:

xn+1 = xn + hvn (3.21)

vn+1 = vn + hM−1(fint(xn) + fext) (3.22)
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where we can see that the all the unknown variables (xn+1 and vn+1) appear only on the

left-hand-side of the equations. This is the reason why it is an explicit time integration

method.

Forward Euler has its built-in problem where the Hamiltonian of the system drifts up

over time, injecting extra energy into the simulation and therefore making it unstable. One

simple way to stabilize the long-term behavior of the energy is to flip the order of position

update and velocity update in Eq. 3.21 and Eq. 3.22, which will yield us:

vn+1 = vn + hM−1(fint(xn) + fext) (3.23)

xn+1 = xn + hvn+1 (3.24)

This is still an explicit time integration scheme if executed sequentially, and is com-

monly referred as symplectic Euler [Kharevych et al., 2006, Stern and Desbrun, 2006].

The symplecticiy is a geometrically motivated property that can ensure a steady long-term

behavior of the system Hamiltonian if the timestep is small enough to ensure its stability.

The reason why both of these explicit schemes rely on small time steps is that they step

to the future blindly using the current configuration, assuming the forces are not changed

during one step. Those blind steps might overshoot and gain unwanted energy into the

system. One way to mitigate this problem is to use higher order explicit time integrators

such as the second order or the fourth order Runge-Kutta methods. We are not going into

more details about Runge-Kutta methods here, one can look it up at Chapter 17 in [Press,

2007]. The overall idea of these explicit methods is that they rely on limited timestep sizes

which might not be suitable for real-time application where a typical timestep is set to be

10−3 to 10−2 second, in which case we might want to resort to implicit time integration

methods.

3.4.2 Implicit Time Integration Methods

As oppose to forward Euler as an explicit method, one stable approximation of Eq. 3.19

and Eq. 3.20 is to estimate them on the other end of the timestep, i.e., treating them as
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constant quantities evaluated at the end of each timestep:

xn+1 = xn + hvn+1 (3.25)

vn+1 = vn + hM−1(fint(xn+1) + fext) (3.26)

This integration scheme is called backward Euler or implicit Euler because the un-

knowns are now on both sides of the equations. It has the opposite Hamiltonian behavior

with forward Euler where the long-term behavior of the total energy of a system simulated

by backward Euler is going down. It means backward Euler introduces artificial damping

into the simulations, stabilizing those simulations even in large timesteps. In the 1D toy

example shown in Figure 3.5, backward Euler approximates the integral using the area of

the blue box in figure (c).

If a long-term energy conservation behavior is needed, one might want a symplectic

version of an implicit time integration method. Implicit midpoint can be used for those

applications with the following update rules:

xn+1 = xn + h

(
vn + vn+1

2

)
(3.27)

vn+1 = vn + hM−1
(

fint

(
xn + xn+1

2

)
+ fext

)
(3.28)

In the 1D toy case, implicit midpoint estimates the integral using the green box as shown

in figure (d) in Figure 3.5. Note that going implicit is not a safeguard for unconditional

stability. Although implicit midpoint method behaves more stable compared to symplectic

Euler, it is not unconditionally stable even solved perfectly. That is why implicit Euler is

used more often in computer graphics applications given the stability concerns.

If we substitute Eq. 3.26 into Eq. 3.25, we will get a single nonlinear root finding

problem with one single unknown variable xn+1:

xn+1 = xn + hvn + h2M−1fext + h2M−1fint(xn+1) (3.29)

Given the assumption that we are simulating hyperelastic materials whose force is

conservative, we can represent the internal force as fint(x) = −∇xE(x). We can then
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plug this into Eq. 3.29 and anti-differentiate the entire equation on xn+1. Once it is done,

computing xn+1 is equivalent to minimize the following problem:

g(x) =
1

2h2
||x− y||2M︸ ︷︷ ︸
inertia

+ E(x)︸ ︷︷ ︸
elasticity

(3.30)

where y = xn+hvn+h
2M−1fext is an aggregated vector encoding the history and external

forces andE(x) is the elastic energy of the system. By definition, the state of arg minxg(x)

is automatically a root for Eq. 3.29 which is the solution of the backward Euler integration.

Intuitively, the first term in Eq. 3.30 can be interpreted as “inertial potential”, attracting

x towards y, where y corresponds to a state predicted by Newton’s first law – motion

without the presence of any internal forces. The second term penalize x with large elastic

deformations. Minimizing this g(x) function corresponds to finding a compromise between

the inertia and elasticity. Similarly we can also express the solution for implicit midpoint

as the minimum of:

g̃(x) =
1

2h2
||x− ỹ||2M + E

(
x + xn

2

)
(3.31)

where ỹ = xn + hvn +
h2

2
M−1fext is a modified inertia term, and the energy is evaluated

at a interpolated place between the current state and the unknown.

Those formulae are sometimes called “variational implicit time integrators” [Martin

et al., 2011], and can be solved with state-of-art numerical solvers such as Newton-Raphson

method. We will temporarily leave the formulae here, and defer the numerical solutions to

the next chapter.
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Chapter 4

State-of-art Numerical Methods

4.1 General Descent Method

Let us begin with the variational form of Implicit Euler integration described using Eq. 3.30,

other implicit integrators can be solved in similar ways too. The first term in Eq. 3.30 is

the inertia term, which is a pure quadratic term over x and has a global minimum point

at x = y. This term simply means that the next state position x will be attracted to the

inertia variable y if there is no internal force at all. The second elastic energy term is

non-linear and usually even non-convex, making the minimization of Eq. 3.30 difficult.

For an arbitrary non-linear function g(x), since we can not find an analytically solution to

minimize it, we shall resort to numerical methods. As long as a deterministic algorithm

can produce a sequence x(1),x(2), . . . ,x(k),x(k+1), . . . that procedurally reduces the energy

function: g(x(k+1)) < g(x(k)), we can run that algorithm until convergence. This kind of

algorithm is usually called a descent method that can be briefly described in Alg. 1, where

δx(k) is a descent direction determined by a certain algorithm, α is a positive step size to

make sure the descent progress is sufficient and the step criterion is usually measured by

either the norm of the residual ||∇g(x(k))|| or the decrement −∇g(x(k))Tδx(k) is small

enough. Note that for any descent direction δx(k) the decrement −∇g(x(k))Tδx(k) must be

positive, indicating that the angle between the descent direction δx(k) and the infinitesimal
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steepest descent direction −∇g(x(k)) is acute. Of course setting the descent direction to

be always the steepest descent direction δx(k) = −∇g(x(k)) is a trivial way to satisfy this.

This is usually called steepest descent method or gradient descent method which is the

simplest descent method to implement. But it is also notorious for its slow convergence

behavior: a typical non-linear problem usually requires more than thousands of gradient

descent iterations to converge.

Algorithm 1: General Descent Method.
x(1) := Initial guess;

for k = 1, . . . , numIterations && Stop criterion is not satisfied do
Find a descent direction: δx(k);

Line search, find a proper step size: α > 0;

Update: x(k+1) = x(k) + αδx(k);

end

Overshooting is another problem in general descent methods, that is why we need

an extra line search procedure to safeguard the descent process. For simple cases in low

dimension spaces, an exact line search can be applied. The key idea of an exact line

search is to find a value α to minimize g(x) by setting: α = argminα>0 g(x + αδx).

It is normally not applicable for complicated scenarios because of the non-linearity of

g(x) itself. Backtracking line search is another alternative to approximately estimate

the step size. A backtracking line search usually starts with a initial guess of step size

equals to 1, and constantly reduce it by a fixed faction of β, until the Armijo condition

g(x+α) < g(x)+γα∇g(x)Tδx is satisfied. Where β ∈ (0, 1) decides how crude the search

is, the lower the more crude, and γ ∈ (0, 0.5) is a non-zero constant to ensure sufficient

descent progress for every descent step. As suggested by Boyd and Vandenberghe [2004],

we usually set β = 0.5 and γ = 0.03 in most of our implementations of descent methods.
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4.2 Newton’s Method

Newton’s method is one of the most popular descent methods because of its nice conver-

gence speed. Instead of using the steepest descent direction, Newton’s method also takes

the curvature of a function at the given point and estimate the descent direction as follows:

δx = −∇2g(x)−1∇g(x) (4.1)

where ∇2g(x) is the Hessian matrix. Newton’s descent direction can be seen as filtered

gradient direction by the inverse of the Hessian matrix. Alg. 2 presents an pseudo code

implementation of Newton’s method with backtracking line search.

Algorithm 2: Newton Solver with Backtracking Line Search
x(1) := y;

g(x(1)) := evalObjective(x(1))

for k = 1, . . . , numIterations do
∇g(x(k)) := evalGradient(x(k))

∇2g(x(k)) := evalHessian(x(k))

δx(k) := −∇2g(x(k))−1∇g(x(k))

α := 1/β

repeat
α := βα

x(k+1) := x(k) + αδx(k)

g(x(k+1)) := evalObjective(x(k+1))

until g(x(k+1)) ≤ g(x(k)) + γα (∇g(x(k)))Tδx(k);

end

4.2.1 Basic Building Blocks for Newton’s Method

If we apply Alg. 2 to solve Eq. 3.30, for every Newton iteration we need to evaluate the

gradient ∇g(x) = M
h2
(x − y) +∇E(x) and the Hessian ∇2g(x) = M

h2
+∇2E(x) once,
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and the objective function g(x) = 1
2h2
||x − y||2M + E(x) at least once. We can see that

for an arbitrary material model, as long as we can compute the objective/gradient/Hessian

of the elastic potential, the inertia term can be trivially added to the system. These

objective/gradient/Hessian evaluations become the basic building blocks for Newton’s

method.

Mass-spring system in 3D. A simple spring in 3D can be described using its two

endpoints and rest-length as shown in Figure 4.1:

x1

x2

l0

Figure 4.1: One simple spring with its rest length l0 and two endpoints x1 and x2.

According to Hooke’s law, the spring potential is defined as:

E(x1,x2) =
1

2
k (||x1 − x2|| − l0)2 (4.2)

where x1,x2 ∈ R3 are spring endpoints, l0 ≥ 0 is the rest length, and k ≥ 0 is the spring

stiffness.

The spatial gradient of the spring potential can be therefore derived easily as:

∂E

∂x1

= k (||x1 − x2|| − l0)
x1 − x2

||x1 − x2||
(4.3)

∂E

∂x2

= − ∂E
∂x1

(4.4)

where intuitively, the term (||x1 − x2|| − l0) is the magnitude of the spring force and
x1−x2

||x1−x2|| indicates the opposite direction of the force. The total elastic force created by a

spring sum up to zero:
∑2

i=1 ∂E/∂xi = 0, showing that the inner force of a spring will not

change the momentum of itself.
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We can further derive the Hessian of the spring as:

∂2E

∂x1∂x1

= k

(
I− l0
||x1 − x2||

(
I− (x1 − x2)(x1 − x2)

T

||x1 − x2||2

))
(4.5)

∂2E

∂x1∂x2

= − ∂2E

∂x1∂x1

(4.6)

∂2E

∂x2∂x1

= − ∂2E

∂x1∂x1

(4.7)

∂2E

∂x2∂x2

=
∂2E

∂x1∂x1

(4.8)

where I is a 3× 3 identity matrix.

FEM in 3D. Although higher order spatial discretization is also used in graphics

applications [Bargteil and Cohen, 2014], we still assume linear finite element for simplicity

[Sifakis and Barbic, 2012]. The state of a linear tetrahedral element can be described using

its four corner points as shown in Figure 3.3. The potential energy of one element is defined

as:

E(F(x)) = wΨ(F(x)) (4.9)

where F(x) = Ds(x)D
T
m is the deformation gradient in Eq. 3.15 and w is the rest-pose

volume of the element: w = det(Dm).

If we denote xji as the j-th dimension of the i-th vertex of a element, then for i = 1, 2, 3,

we have:
∂Ds

∂xji
= δjδ

T
i (4.10)

where δi is a 3× 1 indicator vector: δi(i) = 1 and δi(j) = 0 for ∀j 6= i. δjδTi simply means

a matrix whose value is 1 at its j-th row and i-the column and is 0 everywhere else. Based

on this observation, we can derive the gradient of elastic potential for a 3D linear element

as:

∂E(F(x))

∂xji
= w

∂Ψ(F)

∂F
:
∂F

∂xji
= wP : δjδ

T
i D−1m = w tr(PD−Tm δiδ

T
j ) = wδTj PD−Tm δi

(4.11)

where “:” denotes for the contraction operator: A : B =
∑

i

∑
j AijBij , similarly to the dot

product between vectors, and P = ∂Ψ(F)/∂F is the first Piola-Kirchhoff stress tensor. This
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is basically saying that for i = 1, 2, 3, ∂E(F(x))/∂xji is the j-th row and i-th column of

matrix wPD−Tm . Similarly, we can compute ∂E(F(x))/∂xj4 = wδTj PD−Ts (−δ1− δ2− δ3),

which also satisfy the following property:
∑4

i=1 ∂E(F(x))/∂xi = 0.

In order to compute the Hessian matrix of the this kind of elastic potential we can apply

the same trick again, for i1 = 1, 2, 3 and i2 = 1, 2, 3, we have:

∂2E(F(x))

∂xj1i1∂xj2i2
= wδTj1

[[
δTj2

[
∂P

∂F
D−Tm

]
δi2

]
D−Tm

]
δi1 (4.12)

This is an almost-tensor-free way to explain the hessian matrix, with complicated subscripts.

Here i1 and i2 are indices of the vertices of the elements, j1 and j2 corresponds to the x-,

y- and z- coordinates, ∂P/∂F is a 3 × 3 × 3 × 3 tensor. Speaking in English, as long

as the tensor ∂P/∂F is computed, we can first multiply it by D−Tm , then exact the j2-th

row and i2-th column of this tensor which becomes a 3× 3 matrix, multiply the matrix by

D−Tm again, and then we can find the scalar ∂2E(F(x))/∂xj1i1∂xj2i2 at the j1-th row and i1-th

column of the result matrix. The implementation of this Hessian matrix construction only

requires some reshuffling operations once the tensor ∂P/∂F is computed.

Different energy density functions might be used for different simulations. The corre-

sponding first Piola-Kirchhoff stress tensor P and its derivative ∂P/∂F will be changed

from material models too. Please refer to [Sifakis and Barbic, 2012] for specific FEM

material models.

4.2.2 Limitations

Although the Hessian evaluation and construction look complicated, the computational

cost of it is usually not extremely high if implemented carefully. A bigger problem is the

solve of the linear system in Eq. 4.1 to get the descent direction for every Newton iteration.

Apparently, we should not invert the Hessian matrix explicitly because that will produce a

huge dense matrix, a direct solver using Cholesky factorization or an iterative solve such

as conjugate gradient method is usually applied to solve this linear system. But neither of

them can achieve real-time performance even for middle-scaled meshes with thousands of
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degrees of freedom.

Another even worse problem is that Newton’s method was originally designed for

convex optimization problems, and it might not behave well in non-convex cases. Unfortu-

nately, most of the elastic potential energies are non-convex.

1

1

x x

(a) (b) (c)
-1 1

1

(d)

-1

N 2

N 1

N 3 x

x

Energy

x

Gradient

Figure 4.2: A simple mass-spring model with only one degree of freedom: the central

vertex (N2) can slide on the horizontal direction with a parameter x, as shown in (a, b). The

rest length of both the springs are
√
2. Figure (c) plots the total energy of the two springs,

which has two minima at x = −1 and x = 1 and one local maximum at x = 0. Figure (d)

shows the gradient of the spring energy.

Figure 4.2 shows that even a mass-spring system in an extremely simple setting, the

energy of the entire system is still non-convex. If given an initial guess near x = 0,

Newton’s method will even return us an ascent direction pointing to x = 0. This is because

the Newton direction is not attracted by the minima of the system, but by any stationary

point. One way to enforce a descent direction from Newton’s method is to modify the

Hessian matrix to a positive definite one. Once the Hessian matrix is positive definite, it is

ensured that the angle between the Newton direction and the steepest descent direction will

be acute:
(
− [∇2g]

−1∇g
)T

(−∇g) = ||∇g||2
[∇2g]−1 > 0.

In order to achieve the positive definiteness of the Hessian matrix, we can apply

Tikhonov regularization to the system Hessian matrix. It is usually a trial-and-error ap-

proach applied with direct factorizations. One can try to add more and more identity
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matrices to the system Hessian upon failed Cholesky factorization cases until the factoriza-

tion is succeeded. Another way to factorize the Hessian matrix is based on the observation

that the system Hessian matrix is the summation of the Hessian matrices of all elements.

Therefore as long as all elements have positive definite Hessian matrices, the overall system

Hessian will be positive definite too [Irving et al., 2004]. The per-element Hessian regular-

ization method works on each element individually, it applies eigen decomposition to the

Hessian matrices of all elements and clamps all negative eigen values to non-negative.

The drawback of Tikhonov regularization is that it requires a proper heuristics to

determine how many identity matrices are needed for achieving a positive definite Hessian,

it might take a huge amount of time if the input Hessian matrix is far away from positive

definite. On the other hand, the per-element regularization works on much smaller matrices

and has an explicit upper bound for its computational overhead. However, it will waste a lot

of cycles even on elements with already positive definite Hessian blocks because the eigen

decomposition will be applied on those “good elements” before we know they are good.

Both of the regularization methods will hurt the convergence property of Newton’s method

because the curvature information obtained from the Hessian matrix will be blended with

extra regularization terms.

4.3 Position Based Dynamics

4.3.1 Problem Statement

Position based dynamics (PBD) [Müller et al., 2007] was introduced to computer graphics

as an alternative to simulate deformable objects to an extent of visually plausibility in an

efficient way. However, people usually consider Position Based Dynamics as an ad-hoc

solution because it is not rigorously derived from continuum mechanics. Recently, Macklin

et al. [2016] revealed the relationship between PBD and a constrained dynamics simulation.

Instead of simulating a variational implicit Euler integration in Eq. 3.30. Position based
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dynamics is trying to simulate a constrained problem as following:

minimize
x

1

2h2
||x− y||2M

subject to c(x) = 0

(4.13)

where the objective function is simply the inertia term in Eq. 3.30, but instead of represent-

ing all the elastic potential as a penalty-like term, PBD treats all the constraints as infinitely

hard constraints. For instance, in a mass-spring system simulation, similarly to [Goldenthal

et al., 2007], PBD also treats all springs as inextensible springs, and defines the constraint

for a spring in Figure 4.1 as: c(x1,x2) = ||x1 − x2|| − l0 = 0.

4.3.2 Fast Numerics

We can interpret the constrained problem described in Eq. 4.13 as finding the closest

projection on a non-linear manifold c(x) = 0 from a given point y. It is hard to solve

solely because of the non-linearity of the constraints. It will be a much simpler problem if

all constraints are linear. Goldenthal et al. [2007] proposed a method to approximate this

non-linear projection in an iterative way called Step and Project (SAP). Let us consider a

sequence of points: x(1), x(2), ... , x(k), ... where x(1) = y is the initial guess. The rule to

update each point in this sequence can be defined as following:

x(k+1) =argmin
x

1

2h2
||x− x(k)||2M

subject to c(x(k)) +∇xc(x
(k))(x− x(k)) = 0

(4.14)

The differences between Eq. 4.14 and Eq. 4.13 are: 1. instead of minimizing the

distance between xn+1 and y, SAP tries to deviate the position in the next iteration as little

as possible from the previous iteration; 2. for every iteration of SAP, the constraints treated

as linear constraints. A geometric interpretation of SAP can be found in Figure 4.3, where

the left figure shows a fulled solved problem described in Eq. 4.13 and the right figure

shows the steps of SAP. From this geometric interpretation, we can easily see why this

algorithm is called Step and Project: for every iteration, it projects the positions of the
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Fully solved Eq. 4.13 Step and Project

Figure 4.3: Geometric interpretation of Step and Project (SAP).

vertices into a zero-value manifold for the linearized constraints, and then steps towards

that projection.

We can use Newton-Raphson to solve Eq. 4.14. Since this is a linearly-constrained

quadratic problem, Newton Raphson should be able to converge in one iteration with an

arbitrary initial guess. Therefore we can set the initial guess as x = x(k) and λ = 0, which

will give us the update rule for x(k+1) = x(k) + δx as: M
h2

∇xc(x
(k))T

∇xc(x
(k)) 0

δx
δλ

 = −

 0

c(x(k))

 (4.15)

We can do an even better job to solve this KKT system by observing the simple

structure of the top-left corner of the KKT matrix. By applying a Schur Complement to the

bottom-right zero-matrix in the KKT matrix, we will have:

(0−∇xc(x
(k))(

M

h2
)−1∇xc(x

(k))T)δλ = −c(x(k)) (4.16)

which can be rearranged into:

δλ =
1

h2
(∇xc(x

(k))M−1∇xc(x
(k))T)−1c(x(k)) (4.17)
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Since we often represent the mass matrix M as a diagonally lumped matrix, inverting it

is not a problem. For the matrix∇xc(x
(k))M−1∇xc(x

(k))T, although we use a inversion

notation there in the right hand side of the equation, in practice, it is not necessary to invert

it explicitly. We can instead rely on direct linear solvers based on Cholesky factorization or

iterative solvers such as conjugate gradient method to solve it. By definition, this system

matrix is a positive semi-definite matrix and might be singular in edge cases. In those cases,

we also need to regularize it in order to solve the linear system.

After δλ is solved, we can solve for δx using the first row of Eq. 4.15:

δx = −h2M−1∇xc(x
(k))Tδλ (4.18)

PBD is trying to solve exactly Eq. 4.17 and Eq. 4.18. However, instead of solving all

the constraints as a whole, it projects each constraint one at a time. It is called “Non-linear

Gauss-Seidel” because it resembles Gauss-Seidel iterations to solve linear systems. For

each constraint, the PBD update rules of δλ and δx are as following:

δλ =
c(x(k)

h2∇xc(x(k))M−1∇xc(x(k))T
(4.19)

δx = −h2M−1∇xc(x
(k))Tδλ (4.20)

For a mass-spring system with inextensible spring constraints as c(x1,x2) = ||x1 −

x2||− l0 = 0, we can substitute the constraint function and constraint gradient into Eq. 4.19

and Eq. 4.20 to achieve:

δx1 = −
m−11

m−11 +m−12

(||x1 − x2|| − l0)
x1 − x2

||x1 − x2||
(4.21)

δx2 = +
m−12

m−11 +m−12

(||x1 − x2|| − l0)
x1 − x2

||x1 − x2||
(4.22)

where the δx1 and δx2 are the projections for the two endpoints of a spring, m1 and m2 are

the weights of the two endpoints respectively.

4.3.3 Limitations

Neither SAP nor PBD is converging to the exact solution of Eq. 4.13, their results will

drift because they discard the information of y right after the very first iteration. However,
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if enough number of iterations is executed, both of them will give a reasonable state

that almost satisfy all the non-linear constraints. The major problem of PBD is the poor

convergence speed. In practice, no one has even tried to run PBD until converge due to the

little progress every iteration can make – a converged solution using PBD typically needs

hundreds or thousands of iterations to achieve. Usually, applications based on PBD will

terminate in a very small number of iterations because of the real-time requirement. One

side effect of not having enough PBD iterations in a simulation is that the material will look

stretchier than it should be. This is due to the initial guess before the projection steps. As

described in the paper, the state vector x is initialized as y which represents the inertia term

following Newtons first law of motion. If the work done by the nonlinear Gauss-Seidel

solve or Jacobi solve is not big enough, the final solution will be attracted more by this y

term, behaving overstretched.
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Chapter 5

Fast Simulation of Mass-Spring Systems

Mass-spring systems provide a simple yet practical method for modeling a wide variety of

objects, including cloth, hair, and deformable solids. However, as with other methods for

modeling elasticity, obtaining realistic material behaviors typically requires constitutive

parameters that result in numerically stiff systems. Explicit time integration methods are

fast but when applied to these stiff systems they have stability problems and are prone to

failure. Traditional methods for implicit integration remain stable but require solving large

systems of equations [Baraff and Witkin, 1998, Press, 2007]. The high cost of solving these

systems of equations limits their utility for real-time applications (e.g., games) and slows

production work flows in off-line settings (e.g., film and visual effects).

In this chapter, we describe a fast implicit solver for standard mass-spring systems

with spring forces governed by Hooke’s law. We consider the optimization formulation of

implicit Euler integration [Martin et al., 2011], where time-stepping is cast as a minimization

problem. Our method works well with large timesteps—most of our examples assume a

fixed timestep corresponding to the framerate, i.e., h = 1/30s. In contrast to the traditional

approach of employing Newton’s method, we reformulate this minimization problem

by introducing auxiliary variables (spring directions). This allows us to apply a block

coordinate descent method which alternates between finding optimal spring directions

(local step) and finding node positions (global step). In the global step, we solve a linear

36



system. The matrix of our linear system is independent of the current state, which allows

us to benefit from a pre-computed sparse Cholesky factorization.

5.1 Reformulating Spring Potential

As we have seen in Figure 4.2 before, the spring potential defined by Hooke’s law forms

a non-convex optimization problem that even Newton’s method has troubles to solve it.

The main idea of our method is to reformulate the energy potential E in a way that will

allow us to employ a block coordinate descent method. The key to our reformulation is

the following fact showing that the spring potential in Eq. 4.2 is a solution to a specially

designed constrained minimization problem:

1

2
k(||x1 − x2|| − l0)2 = min

||p||=l0

1

2
k||(x1 − x2)− p||2 (5.1)

Proof. Given the constraint ||p|| = l0, we can rewrite the left hand side of Eq. 5.1 into:

1

2
k(||x1 − x2|| − l0)2 =

1

2
k(||x1 − x2|| − ||p||)2

By applying the reverse triangle inequality we have:

(||x1 − x2|| − ||p||)2 ≤ ||(x1 − x2)− p||2

Next, if we substitute p = l0
x1−x2

||x1−x2|| into the right hand side of Eq. 5.1, we obtain:

1

2
k

∣∣∣∣∣∣∣∣(x1 − x2)− l0
x1 − x2

||x1 − x2||

∣∣∣∣∣∣∣∣2 =
1

2
k

∣∣∣∣∣∣∣∣ x1 − x2

||x1 − x2||
(||x1 − x2|| − l0)

∣∣∣∣∣∣∣∣2
=

1

2
k(||x1 − x2|| − l0)2

Therefore, when p = l0
x1−x2

||x1−x2|| , the right hand side of Eq. 5.1 produces its minimum value

that equals to the left.

We name the auxiliary variable p to represent projection, because the closed-form

solution of p to minimize the constrained optimization problem can be seen as a projection:
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for each spring, p is the projection of the difference between two endpoints of a spring

x1 − x2 onto a sphere whose radius is the rest length of the spring l0.

If we sum up the contribution of all springs together, we get the potential energy of the

entire mass-spring system as:

E(x) =
1

2

m∑
j=1

(
kj min

pj=lj0
||xj1 − xj2 − pj||2

)
=

1

2

m∑
j=1

(
kj min

pj=lj0
||xT

j1 − xT
j2 − pT

j ||2
)

(5.2)

where m is the number of springs in the mass-spring system, for the j-th spring, kj is its

stiffness constant, lj0 is its rest length, xj1 and xj2 are positions of its two endpoints, pj

is the auxiliary projection variable for this j-th spring. The transpositions of all vectors

are intentionally added to fit the representation of our position vector x. We represent the

position x in a three-dimensional space as a n× 3 matrix where n is the number of vertices.

x = [xT
1 ;x

T
2 ; . . . ;x

T
n ], similarly we can introduce our projection matrix p ∈ Rm×3 for the

entire system: p = [pT
1 ;p

T
2 ; . . . ;p

T
m]. Based on this notation, we can see that:

xT
j1 − xT

j2 = GT
j x (5.3)

pj = ST
j p (5.4)

where Gj ∈ Rn×1 is the incidence vector of the j-th spring, i.e. Gj(j1) = 1, Gj(j2) = −1

and zero otherwise, assuming j1 and j2 are the indices for the endpoints of the j-th spring.

Similarly, Sj ∈ Rm×1 is a indicator vector for the j-th spring, Sj = δj . Therefore, we can

rewrite Eq. 5.2 as:

E(x) = min
p∈M

1

2
tr

(
xT

(
m∑
j=1

kjGjG
T
j

)
x

)
− tr

(
xT

(
m∑
j=1

kjGjS
T
j

)
p

)
+ C (5.5)

where M = {(p1,p2, . . . ,pm) : ||pj|| = lj0} is the set of rest-length spring directions, C

is a constant irrelevant to the optimization. For brevity, we define L =
∑m

j=1 kjGjG
T
j and

J =
∑m

j=1 kjGjS
T
j , thus we can further simplify Eq. 5.5 into:

E(x) = min
p∈M

1

2
tr
(
xTLx

)
− tr

(
xTJp

)
+ C (5.6)
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Substituting Eq. 5.6 into our variational implicit Euler integrator Eq. 3.30 will yield us:

g(x) = min
p∈M

(
1

2h2
tr
(
(x− y)TM(x− y)

)
+

1

2
tr
(
xTLx

)
− tr

(
xTJp

)
+ C

)
(5.7)

Therefore, once the following constrained minimization problem is solved, the entire

implicit Euler integration is solved too:

min
x∈Rn×3,p∈M

(
1

2h2
tr
(
(x− y)TM(x− y)

)
+

1

2
tr
(
xTLx

)
− tr

(
xTJp

)
+ C

)
(5.8)

5.2 Numerical Solution

It might sound like a bad idea to reformulate our original unconstrained minimization

problem Eq. 3.30 into a constrained optimization problem Eq. 5.8 with an extra auxiliary

variable p which almost doubles the degrees of the freedom of the system. However, the

new problem Eq. 5.8 can be really easily solved by alternating optimization (also known as

local-global optimization [Sorkine and Alexa, 2007]). Starting from an initial guess for

x (we use x(1) = y as a trivial solution to minimize the inertia term), we first fix x and

compute the projection vector p. This is usually called a “local step” because, in order to

get the stacked vector p, we only need to go find all the spring directions. For every spring,

it is a local operation because the positions of the endpoints are all fixed. Second, we fix p

and compute the optimal x. This is called the “global step” because it is solving a large

convex quadratic optimization problem that involved all the vertices together. The solution

for the “global step” is trivial when p is fixed, we can even compute a closed-form solution

x∗ as:

x∗ =

(
M

h2
+ L

)−1(
M

h2
y + Jp

)
(5.9)

By definition L is a positive-semidefinite matrix (it is very similar to the graphical

Laplacian matrix of the system), thus the system matrix
(
M
h2

+ L
)

is guaranteed to be

positive definite assuming all vertices have positive mass. This matrix is only dependent

on the connectivity and stiffness of the springs, the mass of all vertices and the time step

which are all not likely to change during the simulation. Therefore, we can pre-compute its
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sparse Cholesky factorization (guaranteed to exist), which makes the linear system solve

very fast. Also, because under our reformulation, the position variable x can be represented

as a n× 3 matrix instead of a 3n× 1 vector, the dimension of system matrix
(
M
h2

+ L
)

is

much smaller than the Hessian matrix, acceleration the linear system solve even more.

We run this local-global optimization repeatedly until the maximum number of iterations

is executed or the constrained optimization problem is converged. Note that this method

for mass-spring system simulation is not an ad-hoc solution, it will converge to the exact

same solution of the implicit Euler method with standard Hookean springs.

5.3 Results

We study the convergence speed on one typical frame of our cloth-swinging animation, as

shown in Figure 5.1. The relative error reported in Figure 5.1 is defined as:

g(x(i))− g(x∗)
g(x(1))− g(x∗)

(5.10)

where x(1) is the initial guess, x(i) is the current iterate, and x∗ is the final solution. Our

method exhibits a linear convergence rate, whereas Newton’s method quickly enters its

quadratic convergence phase [Boyd and Vandenberghe, 2004]. However, Figure 5.1 (left)

ignores the fact that one iteration of Newton’s method is computationally substantially

more expensive than one iteration of our method. In Figure 5.1 (right), we therefore plot

the relative error with respect to time. We see that Preconditioned Conjugate Gradients

runs much faster in this case than a sparse direct solver. For both methods, as well as with

our technique, we use the Eigen library, running on a single core of Intel i7-3720QM CPU

at 2.60GHz.

While block coordinate descent cannot compete with the quadratically convergent stage

of Newton’s method, we notice that our approach outperforms Newton’s method in its first

(damped) phase. In other words, Newton’s method becomes more effective only when the

current iterate xi is already close to the solution x∗. If an exact solution is desired, our

technique can be useful for quickly calculating a good starting point for Newton’s method.
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Iteration Count Time Relative Error

(a) 1 5.4ms 3.61× 10−1

(b) 10 50.6ms 1.96× 10−1

(c) 100 501ms 4.02× 10−2

(d) 1000 5.05s 2.98× 10−4

Figure 5.1: Comparison of relative error vs. iteration count (left) does not reflect the cost of

each iteration. Right we plot the relative error vs. computation time. In both graphs we

focus on one time step of our curtain-swinging animation at the depicted frame.

The main practical benefit of our method stems from the fact that exact solution is

rarely required in physics-based animation. Indeed, previous methods [Baraff and Witkin,

1998] limit the number of iterations of Newton’s method to one. To experimentally evaluate

the effect of approximate solutions, we tested our method on a simple animation sequence

simulated with our method using 1, 10, 100, and 1000 iterations of the local/global solver.

One iteration produces a stable and plausible simulation, but the wrinkles look a bit

inflexible. Ten iterations seem to offer the best trade-off between speed and quality. In our

example frame (Figure 5.1), ten iterations of our method achieve better relative error than

one iteration of Newton’s method (0.196, vs. 0.2496 for Newton) as well as faster run-time

(50.6ms, vs. 181ms for one iteration of Newton with PCG). With a hundred or a thousand

iterations it is difficult to tell the difference from an exact solution.

Quick approximate simulation can be achieved also using Position Based Dynamics
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Our Method 
1 iteration, 5 ms 

Our Method 
10 iterations, 50 ms 

Our Method 
100 iterations, 500 ms 

Our Method 
1000 iterations, 5 s 

Exact Solution 
Newton’s Method, 13 s 

Figure 5.2: One example frame from our cloth animation simulated using our method with

1, 10, 100, and 1000 iterations of our local/global solver. Exact solution computed using

Newton’s method is shown for comparison.

(PBD) [Müller et al., 2007]. One problem with PBD is that its stiffness parameters are

not compatible with the standard Hookean model. We tried to carefully tune the PBD

parameters to get behavior as close as possible to our settings. Unfortunately, even though

the PBD solver adjusts its parameters according to the number of iterations, increasing the

number of iterations still increases the effective stiffness of the system. Our method does

not suffer from this problem and converges to the exact implicit Euler solution.
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Figure 5.3: Convergence of our method for varying spring stiffness coefficients (left) and

varying spatial resolution (right).

We designed the following experiments to analyze the convergence of our method. In
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the first experiment, we test how spring stiffness affects the convergence, using our curtain

model with 441 vertices. Figure 5.3 reports the relative error from Eq. 5.10 averaged over

50 simulation frames. As expected, higher stiffness leads to slower convergence. In the next

experiment, we study the effect of varying spatial resolution using a curtain model with

fixed dimension (1m × 1m) and mass (1kg). To achieve resolution independent material

behavior, the spring stiffness is proportional to the resolution, i.e., when we double the

resolution, we divide the spring lengths by two and multiply their stiffness by two. In all

experiments we observe that while our method proceeds very quickly early on, subsequent

iterations are less effective in reducing the error. Therefore, if exact results are desired, we

do not advise iterating our method until convergence but instead recommend switching to

Newton’s method.

Figure 5.4: Bristles of a brush colliding with a rigid object and each other.

Collision handling is an important aspect of physics-based animation. We designed two

experiments to test the behavior of our method in scenarios rich in contact and collisions.

The first test involves a brush model, where individual strands collide not only with a static

rigid object, but also with each other (self-collisions), see Figure 5.4. Our second example

is a dancing clothed character (Figure 5.5), leveraging the publicly available models and

code from ARCSim [Narain et al., 2012]. In the clothing example, 20 iterations of our

method take a total time of 12.2ms. ARCSim’s collision detection and response, executed

once per frame, takes 476ms and therefore presents the bottleneck. We conclude that our

method is best suited for real-time applications where approximate collision handling is

sufficient. Note that adaptive remeshing would have invalidated our pre-factored system
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matrices, so we disable the adaptive remeshing functions of ARCSim.

Figure 5.5: Character clothing with continuous collision detection, including both cloth-

body and cloth-cloth collisions.
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Chapter 6

Projective Dynamics

Finite element discretizations of continuum mechanics formulations allow us to simulate

more accurate and sophisticated phenomena with complex non-linear materials. In this

chapter, we show that for energy potentials with a specific structure we can generalize the

fast numerical solution from mass-spring discretization to finite element method (FEM) as

well.

6.1 Reformulating FEM Potential

The biggest takeaways from our spring energy reformulation are: 1. we represent the state

of a spring using the difference between its two endpoints instead of their absolute positions,

giving us a nice property that the translational component of the motion is automatically

removed from the simulation; 2. we rewrite the original non-convex spring potential into a

pure quadratic form, representing the squared distance between the spring state x1 − x2

and its corresponding projection, leaving all the non-convex components in the projection

vector p which can be computed in parallel in the local step.

Notice that x1 − x2 is nothing but a deformation descriptor for a spring: it encodes the

information of the rotation and current length of a spring regardless of the translation of

its endpoints. Under the linear element assumptions (Eq. 3.11), the deformation gradient

45



F of an element plays a similar role too. The deformation gradient represents the current

rotation and deformation of an element, ignoring the global translational changes of the

vertices.

Like the spring potential described using Hooke’s law, we treat our special FEM

potential as a convex quadratic distance measure in order to further accelerate it:

Ψ(F(x)) = min
p∈M

1

2
k||F− p||2F (6.1)

where k is the stiffness parameter, F is the deformation gradient of an element, and the

subscript F denotes for Frobenius norm. p is a matrix that belongs to a constrained manifold

M which depends on the visual effects we want the material to behave. For instance, M

can be SO(3) to enforce an as-rigid-as-possible [Chao et al., 2010] behavior of an element.

Similarly, with our mass-spring system reformulation, the analytical solution of p can be

seen as the projection of the deformation gradient F.

Like Eq. 5.2, we can sum up the contribution of all elements and define the total elastic

energy as:

E(x) =
1

2

m∑
j=1

min
pj∈Mj

Vjkj||Fj − pj||2F =
1

2

m∑
j=1

min
pj∈Mj

Vjkj||FT
j − pT

j ||2F (6.2)

where Vj is the rest-pose volume of the j-th element and kj is the material stiffness. We

intentionally put the transposition in the energy representation, in order to further simplify

it. We know that Fj(x)
T = D−TmjDsj(x)

T, where DT
sj can be represented as a linear

combination of the position vector x as DT
sj = Ajx, and Aj ∈ R3×n is special selection

matrix:

Aj =


. . . 1 . . . 0 . . . 0 . . . −1 . . .

. . . 0 . . . 1 . . . 0 . . . −1 . . .

. . . 0 . . . 0 . . . 1 . . . −1 . . .

 (6.3)

where the [1; 0; 0], [0; 1; 0] and [0; 0; 1] columns are corresponding to the indices of the first,

second and third vertex of the j-th element, and the [−1;−1;−1] column is corresponding
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to the index of the last vertex of the j-th element. The rest of the Aj matrix is filled with ze-

ros. Therefore we have Ajx = [xT
j1−xT

j4;x
T
j2−xT

j4;x
T
j3−xT

j4] = DT
sj . Similarly to the mass-

spring system representation, if we define a stacked matrix p = [pT
1 ;p

T
2 ; . . . ;p

T
m] ∈ R3m×3,

a spectial indicator matrix Sj = δj ⊗ I33 ∈ R3m×3 (where I33 is a 3× 3 identity matrix and

⊗ denotes for Kronecker product) and a differential operator Gj =
(
D−TmjAj

)T ∈ Rn×3,

we can rewrite the elastic energy in Eq. 6.2 as:

E(x) =
1

2

m∑
j=1

min
pj∈Mj

Vjkj||GT
j x− ST

j p||2F (6.4)

Once we define two constant matrices L and J as: L =
∑m

j=1 VjkjGjG
T
j ∈ Rn×n and

J =
∑m

j=1 VjkjGjS
T
j ∈ Rn×3m, we can further simplify Eq. 6.4 as:

E(x) = min
p∈M

1

2
tr
(
xTLx

)
− tr

(
xTJp

)
+ C (6.5)

Thanks to the reuse of the operators G, S and the projection matrix p, Eq. 6.5 looks

identical with Eq. 5.6. Despite the overloading of G, S and p, the major difference between

Eq. 6.5 and Eq. 5.6 is the constrained manifold M. The definition of M varies in different

scenarios. It can be M = {(p1,p2, . . . ,pm) : pj ∈ SO(3)} to enforce the as-rigid-as-

possible behavior of the elastic body; or it can be M = {(p1,p2, . . . ,pm) : pj ∈ SL(3)}

to preserve the volume of each element as much as possible, where SL(3) is a special

linear group of 3× 3 matrices with determinant 1.

We can substitute Eq. 6.5 into Eq. 3.30 to write down the final constrained optimization

to simulate finite element models in 3D:

min
x∈Rn×3,p∈M

(
1

2h2
tr
(
(x− y)TM(x− y)

)
+

1

2
tr
(
xTLx

)
− tr

(
xTJp

)
+ C

)
(6.6)

6.2 Numerical Solution

Like the proposed fast-mass spring simulation method, we can apply the local-global

optimization method to optimize Eq. 6.6. The global step is exactly the same with the
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mass-spring system:

x∗ =

(
M

h2
+ L

)−1(
M

h2
y + Jp

)
(6.7)

where the matrix M
h2

+L is only dependent on the mesh topology, the rest pose and stiffness

of all elements, the time step of the simulation and the mass for all points. We pre-compute

this system matrix and its Cholesky factorization, so that during each global step, only a

forward-backward substitution is needed to solve the linear system.

The local step which is the step to find the projections really depends on specific material

models. Unlike the mass-spring system, the local step for FEM simulations usually does

not have a closed-form solution because the non-convexity in most of the FEM problems is

more complicated.

For example, if we want to enforce the change of any deformation to be less than a

certain threshold, we can run a signed singular value decomposition (SSVD) [Sorkine,

2009] on the deformation gradient: F = UΣVT and set the projection to be p = UΣ̃VT,

where Σ̃ is clamped from Σ by some user threshold σmin ≤ Σ̃ii ≤ σmax. If we set

σmin = σmax = 1 it will enforce the projection to be rotation mode only: p ∈ SO(3).

Figure 6.1 shows the results of a cloth simulation with different σmin and σmax choices.

Another interesting projection is to project the deformation gradient onto SL(3). We

can start from the SSVD of F as well, and formulate a non-linear local problem as:

min
d

||d||2

s.t. c(d) = 0

where c(d) =
∏3

i=1(Σii+di)− 1 and the unknown variable d is a 3× 1vector. This little

optimization problem can be solved by any iterative quadratic programming method. Since

it is in the local step, we can run it for all the elements in parallel. After the optimization is

solved, we can use p = U(Σ + diag(d))VT as the projection of F on SL(3). The effects

of the volume constraints can be seen if Figure 6.2.
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Figure 6.1: Starting from the same mesh, strain limiting allows simulating material that

can undergo small to moderate amount of stretching. From left to right, we use strain

limits [σmin, σmax] of [90%, 110%], [80%, 120%] and [70%, 130%]. Notice how the cloth

stretches and how the folds get absorbed when the limit increases.

Figure 6.2: Varying weight combinations of volume preservation and strain constraints

allow the simulation of different types of materials for volumetric objects. The top row

shows the effect of increasing the weight of the strain constraints from left to right; the

bottom row shows the effect of increasing the weight of the volume preservation constraints

from left to right.
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Chapter 7

Quasi-Newton Methods for Real-time

Simulation of Hyperelastic Materials

Currently, our method works only on a special type of elastic models Eq. 6.1 – a squared

distance function between an element’s deformation descriptor and its projection. However,

most of the elastic material models used by continuum mechanics (such as St. Venant-

Kirchhoff and Neo-Hookean models, or even as simple as a co-rotated linear elasticity

model) can not be represented in this way. In order to support more general hyperelastic

materials, we start from a reformulation of our existing methods.

7.1 Quasi-Newton Interpretation

Let us now describe how our existing methods can be interpreted as a quasi-Newton

method. Note that Eq. 5.8 and Eq. 6.6 will converge to the exact solution of an implicit

Euler integration using their corresponding material model, the auxiliary projection variable

p is introduced only for the local-global optimization scheme. Instead of being used as an

auxiliary variable, p can be also seen as an implicit function on x that can minimize Eq. 6.6.
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In that case, we can rewrite the objective of our variational implicit Euler as following:

g(x) =
1

2h2
tr
(
(x− y)TM(x− y)

)
+
1

2
tr
(
xTLx

)
− tr

(
xTJp(x)

)
+
1

2
tr
(
p(x)TSp(x)

)
(7.1)

where p(x) is an implicit projection function that maps from x ∈ Rn×3 to R3m×3 for 3D

finite element models or Rm×3 for mass-spring systems. Note that the previous constant

term C is not negligible anymore, and appears as 1
2

tr
(
p(x)TSp(x)

)
in this optimization,

where S =
∑m

j=1 VjkjSjS
T
j , Sj is defined in Eq. 5.4 and Eq. 6.4. By definition, p(x) can

be seen as a stacked function from all elements: p(x) = [p1(x)
T;p2(x)

T; . . . ;pm(x)
T]

and for the j-th element, the implicit projection function pj(x) can be seen as:

pj(x) = argmin
pj∈Mj

||Gjx− pj||2 (7.2)

Since now our objective goes back to an unconstrained minimization problem with a

single variable x, we can first compute the gradient of g(x):

∇g(x) = 1

h2
M(x− y) + Lx− Jp(x) +

∂p(x)

∂x
: (Sp(x)− JTx) (7.3)

where the last term ∂p(x)
∂x

: (Sp(x)− JTx) comes from the derivative of p(x) by applying

the chain rule. ∂p(x)
∂x

is a 3m × 3 × n × 3 tensor in FEM cases and an m × 3 × n × 3

tensor in mass-spring cases. The overall gradient∇g(x) is an n× 3 matrix, where the trace

operator nicely goes away due to its linear property.

Although ∂p(x)
∂x

is an ugly tensor and is hard to compute for arbitrary projections.

However, as long as p(x) is a projection function, the term ∂p(x)
∂x

: (Sp(x) − JTx) is

always zero.

Proof. Because the total potential energy is the summation of the individual potential
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energy contributions from all elements. we cam rewrite ∂p(x)
∂x

as:

∂p(x)

∂x
: (Sp(x)− JTx) =

∂p(x)

∂x
:

m∑
j=1

Vjkj(SjS
T
j p(x)− SjG

T
j x) (7.4)

=
m∑
j=1

VjkjS
T
j

∂p(x)

∂x
: (ST

j p(x)−GT
j x) (7.5)

=
m∑
j=1

Vjkj
∂pj(x)

∂x
: (ST

j p(x)−GT
j x) (7.6)

Note that Sj is a selection matrix for the j-th constraint, ∂pj(x)

∂x
= ST

j
∂p(x)
∂x

simply

extracts the components of ∂p(x)
∂x

contributed by the j-th element, forming a smaller

3 × 3 × n × 3 tensor. And by definition Gjx is the deformation descriptor for the j-th

element: it is xT
j1 − xT

j2 for a mass-spring system and is FT
j for an FEM case; Sjp is the

transpose of the projection of the j-th element: Sjp = pT
j . Therefore (ST

j p(x) −GT
j x)

simply means the difference between an element’s deformation descriptor and its projection.

Given that ∂pj(x)

∂x
is a tensor that can only slide on the tangent space of Mj by definition

of pj(x) described in Eq. 7.2, the contraction between ∂pj(x)

∂x
and (ST

j p(x)−GT
j x) will

vanish (like the dot-product between two orthogonal vectors):

∂pj(x)

∂x
: (ST

j p(x)−GT
j x) = 0, for ∀j ∈ [1,m] (7.7)

Substituting Eq. 7.7 into Eq. 7.6 will give us:

∂p(x)

∂x
: (Sp(x)− JTx) = 0 (7.8)

which ends the proof.

Substituting Eq. 7.8 into Eq. 7.3 will get us a much simpler representation of the

gradient of our objective function:

∇g(x) = 1

h2
M(x− y) + Lx− Jp(x) (7.9)

This gradient is clear enough as if the projection function p(x) is independent of x,

similarly to what we did in the local-global optimization , where the projection matrix is

52



treated as constant in the global step. Newton’s method will proceed by computing the

second order derivative of g(x), i.e. the Hessian matrix ∇2g(x) = M
h2

+∇2E(x), and use

it to compute a descent direction; δxNewton = − (∇2g(x))
−1∇g(x). Some extra safeguard

approaches (described in section Section 4.2.2) might be needed too, to ensure δxNewton is

always a descent direction.

Instead of applying the inverse of Hessian matrix to get the descent direction, what will

happen if we apply the inverse of M
h2

+ L to the negative gradient? Simple algebra reveals:

−
(

M

h2
+ L

)−1
∇g(x) =

(
M

h2
+ L

)−1(
M

h2
y + Jp(x)

)
− x (7.10)

where the first term on the right hand side
(
M
h2

+ L
)−1 (M

h2
y + Jp(x)

)
is exactly the result

x∗ of one iteration of the local-global optimization, see Eq. 5.9 and Eq. 6.7. Therefore, we

can rearrange Eq. 7.10 to get:

x∗ = x−
(

M

h2
+ L

)−1
∇g(x) (7.11)

where we can define δx = −
(
M
h2

+ L
)−1∇g(x) as a descent direction. It is guaranteed to

be a descent direction without any definiteness treatments because M
h2

+L is by definition a

positive definite matrix. Once we understand one local-global iteration as an update based

on Eq. 7.11, we can treat our methods in simulating mass-spring systems and FEM models

as a special quasi-Newton method. It is special because a typical quasi-Newton method

uses line search techniques [Nocedal and Wright, 2006] to find a parameter α such that

x+αδx reduces the objective sufficiently. However, with the special type of energy Eq. 6.1,

the optimal value of α is always 1 when run our quasi-Newton method.

This quasi-Newton interpretation suggests that a similar optimization strategy might be

effective for more general elastic potential energies. We will first focus on isotropic elastic

materials, deferring the discussion of anisotropic materials. The assumption of isotropy

(material-space rotation invariance) together with world-space rotation invariance means

that we can express elastic energy density function Ψ as a function of singular values of

the deformation gradient [Irving et al., 2004, Sifakis and Barbic, 2012]. In the volumetric
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case, we have three singular values σ1, σ2, σ3 ∈ R, also known as “principal stretches”.

The function Ψ(σ1, σ2, σ3) must be invariant to any permutation of the principal stretches,

e.g., Ψ(σ1, σ2, σ3) = Ψ(σ2, σ1, σ3) etc. Because directly working with such functions Ψ

could be cumbersome, we instead use the Valanis-Landel hypothesis [Valanis and Landel,

1967], which assumes that:

Ψ(σ1, σ2, σ3) = a(σ1) + a(σ2) + a(σ3)+

b(σ1σ2) + b(σ2σ3) + b(σ1σ3) + c(σ1σ2σ3),
(7.12)

where a, b, c : R → R. Many material models can be written in the Valanis-Landel

form, including linear corotated material [Sifakis and Barbic, 2012], St. Venant-Kirchhoff,

Neo-Hookean, and Mooney-Rivlin. The recently proposed spline-based materials [Xu

et al., 2015] are also based on the Valanis-Landel assumption. How can we simulate

these types of materials efficiently? Invoking the quasi-Newton interpretation discussed

above, our method will minimize the objective g by performing descent along direction

δx := −(M/h2 + L)−1∇g(x). The mass matrix M and step size h are defined as before,

and computing∇g(x) is straightforward. But how to define a matrix L for a given material

model? This matrix can still have the form L :=
∑
wjGjG

T
j , but the question is how to

choose the weights wj . Previously, we assumed the weights are given as wj = Vjkj , where

Vj > 0 is rest-pose volume of j-th element, and kj > 0 is a stiffness parameter provided by

the user. In our case, the user instead specifies a material model according to Eq. 7.12 from

which we have to infer the appropriate kj value. In the following we drop the subscript j

for ease of notation.

For linear materials (Hooke’s law), stiffness is given as the second derivative of elastic

energy. Therefore, it would be tempting to set k equal to the second derivative of Ψ at the

rest pose (corresponding to σ1 = σ2 = σ3 = 1), which evaluates to a′′(1) + 2b′′(1) + c′′(1),

regardless of whether we differentiate with respect to σ1, σ2, or σ3. Even though this method

would produce suitable k for some materials (such as corotated elasticity), it does not work

e.g. for a polynomial material defined as a(x) = µ(x− 1)4, b(x) = 0, c(x) = 0. With this

material, the second derivatives at x = 1 evaluate to zero regardless of the value of µ, which
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would lead to zero stiffness which is obviously not a good approximation. The problem is

the second derivative takes into account only infinitesimally small neighborhood of x = 1,

i.e., the rest pose. However, we need a single value of k which will work well in the entire

range of deformations expected in our simulations. To capture this requirement, we define

an interval [xstart, xend] where we expect our principal stretches to be. We consider the

following stress function:

f(σ1) =
∂Ψ

∂σ1

∣∣∣∣
σ2=1,σ3=1

= a′(σ1) + 2b′(σ1) + c′(σ1), (7.13)

and define our k as the slope of the best linear approximation of Eq. 7.13 at [xstart, xend].

Formally:

k := argmin
k

∫ xend

xstart

(k(x− 1)− f(x))2dx. (7.14)

Note that due to the symmetry of the Valanis-Landel assumption, we would obtain

exactly the same result if we differentiated with respect to σ2 or σ3 (instead of σ1 as above).

We study different choices of [xstart, xend] intervals and in summary, the results are not very

sensitive on the particular choice of xstart and xend. The key fact is that regardless of the

specific setting of xstart and xend, spatial variations of µ are correctly taken into account,

i.e., softer and stiffer parts of the simulated object will have different µ coefficients. Even

though all elements have the same [xstart, xend] interval, the resulting matrices L and J

properly reflect the spatially varying stiffness.

In our previous methods using Eq. 6.1, the line search parameter α = 1 is always

guaranteed to decrease the objective g(x). Unfortunately, this is no longer true in our gen-

eralized quasi-Newton setting, where it is easy to find examples where g(x + δx) > g(x),

i.e., taking a step of size one actually increases the objective. This can lead to erroneous

energy accumulation, potentially resulting in catastrophic failure of the simulation (“explo-

sions”). Fortunately, thanks to the fact that M/h2 + L is positive definite, δx is guaranteed

to be a descent direction. Therefore, there exists α > 0 such that g(x + αδx) ≤ g(x)

(unless we are already at a critical point ∇g(x) = 0, at which point the optimization is

finished). In fact, we can ask for even more, i.e., we can always find α > 0 such that

55



g(x + αδx) ≤ g(x) + γα tr((∇g(x))Tδx) for some constant γ ∈ (0, 0.5). This is known

as the Armijo condition which expresses the requirement of “sufficient decrease” [Nocedal

and Wright, 2006], preventing the line search algorithm from reducing the objective only

by a negligible amount. Another requirement for robust line search is to avoid too small

steps α even though they might satisfy the Armijo condition.

We tested two possible strategies: 1) backtracking line search algorithm that satisfies

only the Armijo condition, and 2) line search algorithm that satisfies both the Armijo condi-

tion and the “curvature condition” (collectively known as “Wolfe conditions”). In summary,

we found that both methods lead to comparable error reduction, but the backtracking line

search is faster. In our final algorithm, we, therefore, use the backtracking line search.

Specifically, we set the initial α to 1 and multiply it by β ∈ (0, 1) after every failed attempt.

For most of our test cases, we experienced that β = 0.5, which means each failed line

search attempt will reduce the step size by half, works well in practice.

Alg. 3 summarizes the process of computing one frame of our simulation. Similarly to

Alg. 2, the outer loop performs quasi-Newton iterations and the inner loop implements the

line search.

Indeed there is no “free lunch” to generalize our previous methods to support arbitrary

hyperelastic materials. With energies using quadratic distance functions (Eq. 6.1), we do

not need the line search, because α = 1 always works. Indeed, if we drop the line search

from Alg. 3, the algorithm becomes equivalent to a generalized local/global process, which

is unstable for general material simulation purposes. Rejected line search attempts, i.e.,

additional iterations of the line search, represent the main computational overhead of our

quasi-Newton method. Fortunately, we found that in practical simulations the number of

extra line search iterations is relatively small.
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Algorithm 3: Quasi-Newton Solver with Backtracking Line Search.
x(1) := y;

g(x(1)) := evalObjective(x(1))

for k = 1, . . . , numIterations do
∇g(x(k)) := evalGradient(x(k))

δx := −(M/h2 + L)−1∇g(x(k))

α := 1/β

repeat
α := βα

x(k+1) := x(k) + αδx

g(x(k+1)) := evalObjective(x(k+1))

until g(x(k+1)) ≤ g(x(k)) + γα tr((∇g(x(k)))Tδx);

end

7.2 Boosting Convergence

The quasi-Newton interpretation allows us to take advantage of further mathematical

optimization techniques. In this section, we discuss how to accelerate the convergence

of our method using L-BFGS (Limited-memory BFGS). The BFGS algorithm (Broyden-

Fletcher-Goldfarb-Shanno) is one of the most popular general purpose quasi-Newton

methods; its key idea is to approximate the Hessian using curvature information calculated

from previous iterates, i.e., x(1), . . . ,x(k−1). The L-BFGS modification means that we will

use only the most recent w iterates, i.e., x(k−w), . . . ,x(k−1); the rationale being that too

distant iterates are less relevant in estimating the Hessian at x(k).

In Alg. 3, the matrix M/h2 +L in line 4 can be interpreted as our initial approximation

of the Hessian. This matrix is constant which on one hand enables its pre-factorization, but

on the other hand, M/h2+L may be far from the Hessian∇2g(xk), which is the reason for

slower convergence compared to Newton’s method. L-BFGS allows us to develop a more

accurate, state-dependent Hessian approximation, leading to faster convergence without too
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much computational overhead (in our experiments the overhead is typically less than 1% of

the simulation time). The key to fast iterations of L-BFGS is the fact that the progressively

updated approximate Hessian A(k) is not stored explicitly, which would require us to solve

a new linear system A(k)δx = −∇g(x(k)) each iteration, implying high computational

costs. Instead, L-BFGS implicitly represents the inverse of A(k), i.e., linear operator B(k)

such that the desired descent direction can be computed simply as δx = −B(k)∇g(x(k)).

The linear operator B(k) is not represented using a matrix (which would have been dense),

but instead, as a sequence of dot products, known as the L-BFGS two-loop recursion, see

Alg. 4. For a more detailed discussion of BFGS and its variants, we refer to Chapters 6 and

7 of [Nocedal and Wright, 2006].

Algorithm 4: Descent direction computation with L-BFGS
q := ∇g(x(k))

for i = k − 1, . . . , k − w do
s(i) := x(i+1) − x(i); t(i) := ∇g(x(i+1))−∇g(x(i)); ρ(i) := tr((t(i))Ts(i))

ζ(i) := tr((s(i))Tq)/ρ(i)

q := q− ζ(i)t(i)

end

r := (A(0))−1q // A(0) is initial Hessian approximation

for i = k − w, . . . , k − 1 do
η := tr((t(i))Tr)/ρ(i)

r := r + s(i)(ζ(i) − η)
end

δx := −r // resulting descent direction

Alg. 4 requires us to provide an initial Hessian approximation A(0), ideally such that

the linear system A(0)r = q can be solved efficiently. In our method, we use M/h2 + L as

the initial Hessian approximation. At first, it may seem the initialization of the Hessian is

perhaps not too important and the L-BFGS iterations quickly approach the exact Hessian.

However, this intuition is not true. We experiment with different possible initializations of
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the Hessian and show that our particular choice of M/h2+L outperforms alternatives such

as Hessian of the rest-pose and many others. In short, the reason is that the L-BFGS updates

use only a few gradient samples, which provide only a limited amount of information about

the exact Hessian. The appeal of the L-BFGS strategy is that it is very fast – the compute

cost of the two for-loops in Alg. 4 is negligible compared to the cost of solving the linear

system A(0)r = q with our choice of A(0) = M/h2 + L. This is true even for high values

of w. In other words, the linear solve using M/h2 + L is still doing the “heavy lifting”,

while the L-BFGS updates provide additional convergence boost at the cost of minimal

computational overhead.

Upgrading our method with L-BFGS is simple: we only need to replace the descent

direction evaluation (δx := −(M/h2 + L)−1∇g(x(k))) in Alg. 3 with a call of Alg. 4.

Note that for w = 0, Alg. 4 returns exactly the same descent direction as before. What

is the optimal w, i.e., the size of the history window? Too small w will not allow us to

unlock the full potential of L-BFGS. The main problem with too high w is not the higher

computational cost of the two loops in Alg. 4, but the fact that too distant iterates (such as

x(k−100)) may contain information irrelevant for the Hessian at x(k) and the result can be

even worse than with a shorter window. We found that w = 5 is typically a good value in

our experiments.

Finally, we note that even though the Wolfe conditions are the recommended line search

strategy for L-BFGS, we did not observe any significant convergence benefit compared

to our backtracking strategy. However, evaluating the Wolfe conditions increases the

computational cost per iteration and therefore, we continue to rely on the backtracking

strategy as described in Alg. 3.

7.3 Results

Our method supports standard elastic materials, such as corotated linear elasticity, St.

Venant-Kirchhoff and the Neo-Hookean model and also the spline-based material proposed
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Corotated Linear Elasticity

Our method: 20.1 ms/frame

Newton's method 308 ms/frame

Neo-Hookean

Our method: 17.8 ms/frame

Newton's method 305 ms/frame

St. Venant Kirchhoff

Our method: 17.2 ms/frame

Newton's method 305 ms/frame

Polynomial Material

Our method: 21.5 ms/frame

Newton's method 308 ms/frame

Spline-based Material A

Our method: 36.6 ms/frame

Newton's method 315 ms/frame

Spline-based Material B

Our method: 30.7 ms/frame

Newton's method 316 ms/frame

Figure 7.1: Our method enables fast simulation of many different types of hyperelastic

materials. Compared to the commonly-applied Newton’s method, our method is about 10

times faster, while achieving even higher accuracy and being simpler to implement. The

Polynomial and Spline-based materials are models recently introduced by Xu et al. [2015].

Spline-based material A is a modified Neo-Hookean material with stronger resistance to

compression; spline-based material B is a modified Neo-Hookean material with stronger

resistance to tension.

by Xu et al. [2015], see Figure 7.1.

We demonstrate that our extensions to more general materials and the L-BFGS solver

upgrade do not compromise simulation robustness. In Figure 7.2, we show an elastic hippo

which recovers from an extreme (randomized) deformation with many inverted elements.

Specifically, the hippo model uses L-BFGS with m = 5 and corotated linear elasticity with

µ = 20 and λ = 100.

In order to compare the convergence of different methods, we use the relative error,
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Figure 7.2: Our method is robust despite extreme initial conditions: a randomly initialized

hippo returns back to its rest pose. This example does not contain any explicit inversion

handling constraints, only the standard penalization of inverted elements due to corotated

elasticity.

defined as:
g(x(k))− g(x∗)
g(x(1))− g(x∗)

, (7.15)

where x(1) is the initial guess (we use x(1) := y for all methods), x(k) is the k-th iterate,

and x∗ is the exact solution computed using Newton’s method (iterated until convergence).

time
0 0.5 1 1.5

re
la

tiv
e

er
ro

r

10-6

10-4

10-2

100

number of iterations
0 10 20 30 40 50

10-6

10-4

10-2

100

Our Hessian

approximation

Scaled

Identity

Rest-pose

Hessian

Stiffness-warped

rest-pose Hessian

Hessian evaluated

once every frame

Newton's method

(Hessian evaluated 

every iteration)

Figure 7.3: Convergence comparison of L-BFGS methods (all using w = 5) initialized

with different Hessian approximations, along with Newton’s method (baseline). The model

is “Twisting bar” with Neo-Hookean elasticity.

We first analyze the different choices of the initial estimates of the Hessian. Our method

can be interpreted as providing a particularly good initial estimate of the Hessian for

L-BFGS. Therefore, it is important to compare to other possible Hessian initializations. In
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a general setting, Nocedal and Wright [2006] recommend to bootstrap L-BFGS using a

scaled identity matrix:

A(0) :=
tr((s(k−1))Ty(k−1))

tr((y(k−1))Ty(k−1))
I. (7.16)

We experimented with this approach, but we found that our choice A(0) := M/h2 + L

leads to much faster convergence, trumping the computational overhead associated with

solving the pre-factorized system A(0)r = q (see Figure 7.3, blue graph).

Another possibility would be to set A(0) equal to the rest-pose Hessian, (formally,

A(0) := M/h2 +∇2E(X), where X is the rest pose configuration). It is also a constant

matrix which can be pre-factorized. As shown in Figure 7.3 (yellow graph), this is a slightly

better approximation than scaled identity, but still not very effective. This is because the

actual Hessian depends on world-space rotations of the model, deviating significantly from

the rest-pose Hessian.

A(0) Rest-pose Hessian Our Hessian approximation

configuration 1 2 1 2

condition number of A(0)−1∇2g(x) 2.45 45.5 9.94 9.94

Table 7.1: Condition number of A(0)−1∇2g(x) in Configurations 1 and 2 as in Figure 7.4,

where∇2g(x) is the exact Hessian matrix evaluated at the beginning of the frame and A(0)

is an approximate Hessian, computed 1) at the rest pose and 2) using our method.

Figure 7.4 shows an example illustrating the drawbacks of the rest-pose Hessian.

Configuration 1 shows an elastic cube released from a slightly stretched state. In this

configuration, setting A0 to the rest-pose Hessian results in faster error reduction than

our method (red graph), because the initial configuration is close to the rest pose and

therefore the exact Hessian is close to the rest-pose Hessian. Unfortunately, when we

rotate the initial configuration by 90 degrees (Configuration 2), the rest-pose Hessian

becomes ineffective, as it is far away from the exact Hessian (yellow graph). Our Hessian

approximation is invariant to rigid body transformations and therefore leads to the same

error reduction in both Configurations 1 and 2 (blue graph). To further analyze this effect,
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Configuration 1 Configuration 2
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Figure 7.4: Convergence comparison of L-BFGS methods with different configurations.

Configuration 1 is the simulation of an elastic cube with Neo-Hookean elasiticy, released

from a horizontally stretched pose, close to the rest pose. Configuration 2 is the same

configuration rotated by 90 degrees. Using the rest-pose Hessian as initial Hessian ap-

proximation does not work well in Configuration 2. Our method is rotation invariant and

therefore performs equally well in both configurations.

we also computed the condition number of A(0)−1∇2g(x) where A(0) is an approximate

Hessian. The conditions numbers reported in Table 7.3 confirm this observation.

Another interpretation of our Hessian approximation can be derived from the energy

density function of the Neo-Hookean material [Sifakis and Barbic, 2012]:

Ψ(F) =
µ

2
(tr(FTF)− 3)− µ log(det(F)) +

λ

2
log2(det(F)) (7.17)

where F is the deformation gradient and µ and λ are Lamé coefficients. In this case,

our Hessian approximation corresponds to the first term, i.e., tr(FTF), which is indeed

rotation invariant. The rest-pose Hessian is not rotation invariant and thus produces worse

approximation of the exact Hessian as shown in Figure 7.4.
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This issue of the rest-pose Hessian was observed [Müller et al., 2002], who proposed

per-vertex stiffness warping as a possible remedy. Per-vertex stiffness warping still allows

us to leverage pre-factorization of the rest-pose Hessian and results in better convergence

than pure rest-pose Hessian, see Figure 7.3 (purple graph). However, per-vertex stiffness

warping may introduce ghosts forces, because stiffness warping uses different rotation

matrices for each vertex, which means that internal forces in one element no longer have to

sum to zero. The ghost forces disappear in a fully converged solution, however, this would

require a prohibitively high number of iterations.

Yet another possibility is to completely re-evaluate the Hessian at the beginning of

each frame. This requires re-factorization, however, the remaining iterations can reuse the

factorization, relying only on L-BFGS updates. When measuring convergence with respect

to the number of iterations, this approach is very effective, as shown in Figure 7.3 (right,

green graph). However, the cost of the initial Hessian factorization is significant, as can be

seen in Figure 7.3 (left, green graph). Our method uses the same Hessian factorization for

all frames, avoiding the per-frame factorization costs, while featuring excellent convergence

properties, see Figure 7.3 (blue graph).
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Figure 7.5: Comparison of L-BFGS convergence rate with different history window sizes

(w).

In order to find the best history window size (w), we experimented with different

values of w, see Figure 7.5. Too large m takes into account too distant iterates which can
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lead to a worse approximation of the Hessian. In Figure 7.5, we see the optimal value is

w = 5, which is also our recommended default setting. However, it is comforting that

the algorithm is not particularly sensitive to the setting of w – even large values such as

w = 100 produce only slightly worse convergence. We also observed that in scenarios with

frequent collisions, the history becomes less useful. In these cases, reducing the window

size according to the number of newly instantiated collision constraints may be beneficial.
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Figure 7.6: The convergence rate for different stiffness parameters chosen from different

[xstart, xend] intervals.

As discussed in the previous section, we use Eq. 7.14 to define our stiffness parameter k

as the slope of the best linear approximation of Eq. 7.13 at ∈ [xstart, xend]. What is the best

[xstart, xend] interval to use? In the limit, with [xstart, xend]→ [1, 1], our k would converge

to the second derivative. However, a finite interval [xstart, xend] guarantees that our k is

meaningful even for materials such as the polynomial material a(x) = µ(x− 1)4, b(x) =

0, c(x) = 0; in this case, we obtain a k which depends linearly on µ. We argue the

convergence of our algorithm is not very sensitive to a particular choice of the [xstart, xend]

interval. In Figure 7.6, we show convergence graphs of a twisting bar with Neo-Hookean

material using different intervals to compute the stiffness parameter k. Although Neo-

Hookean material is highly non-linear, the convergence rates for different interval choices

are quite similar. Therefore, we decided not to investigate more sophisticated strategies and

we set xstart = 0.5, xend = 1.5 in all of our simulations.
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Figure 7.7: Convergence comparison of various methods using sparse direct solvers and

conjugate gradients. The model is “Twisting bar” with Neo-Hookean elasticity.

Sparse iterative solvers do not require expensive factorizations and are therefore at-

tractive in interactive applications. A particularly popular iterative solver is the Conjugate

Gradient method (CG) [Hestenes and Stiefel, 1952]. An additional advantage is that CG

can be implemented in a matrix-free fashion, i.e., without explicitly forming the sparse

system matrix. Gast et al. [2015] further accelerate the CG solver used in Newton’s method

by proposing a CG-friendly definiteness fix. Specifically, the CG iterations are terminated

whenever the maximum number of iterations is reached or indefiniteness of the Hessian

matrix is detected.

While iterative methods can be the only possible choice in high-resolution simulations

(e.g., in scientific computing), in real-time simulation scales, sparse direct solvers with

pre-computed factorization are hard to beat, as we show in Figure 7.7. Specifically, we

test Newton’s method with linear systems solved using CG with 5 and 15 iterations, using

Jacobi preconditioner. Even with 15 CG iterations, the accuracy is still not the same as

with the direct solver while the computational cost becomes high. If we use only five

CG iterations the linear system solving time improves, but the convergence rate suffers

because the descent directions are not sufficiently effective. The method of Gast et al. [2015]

initially outperforms Newton with CG, however, the convergence slows down in subsequent

iterations. We also tried to apply CG to our method, in lieu of the direct solver. With 15
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CG iterations the convergence is competitive, however, the CG solver is slower.
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Figure 7.8: Comparison to preconditioned conjugate gradients (PCG) with different precon-

ditioners, tested on the “Twisting bar” example with Neo-Hookean elasticity. Experiment

(a.) is L-BFGS using our Hessian approximation as the initial guess. The rest of the

experiments (b. - f.) are L-BFGS using the Hessian matrix evaluated at the beginning of

each frame solved by the following options: (b.) direct solver; (c.) 5 PCG iterations with

incomplete Cholesky (ichol) of the rest-pose Hessian; (d.) 15 PCG iterations with ichol of

the rest-pose Hessian; (e.) 5 PCG iterations with ichol of our Hessian approximation; (f.)

15 PCG iterations with ichol of our Hessian approximation;

A carefully chosen preconditioner usually helps the convergence of a CG solver. Fig-

ure 7.8 shows an example of the effect of different preconditioners. The green graph is

L-BFGS initialized with the Hessian matrix evaluated at the beginning of every frame,

solved by a direct solver. This Hessian approximation provides a very nice initial guess for

L-BFGS, but its evaluation and factorization is too expensive to execute once per frame.

The two yellow graphs use the same Hessian approximation as the green graph, but are

solved using preconditioned conjugate gradients (PCG) with 5 and 15 iterations, using

incomplete Cholesky factorization of the rest-pose Hessian as a preconditioner. Compared

with the green graph, we can see that the PCG solver is more efficient especially at the first

several iterations, since it does not require the expensive factorization of the Hessian matrix.

However, the convergence starts to slow down at later iterates. The two purple graphs
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are using the exact same configuration as the yellow graphs, but use incomplete Cholesky

factorization of our Hessian approximation, M/h2 + L, as a preconditioner. We can see

that our Hessian approximation is a better preconditioner than the rest-pose Hessian.
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Chapter 8

Implementation

In this chapter, we discuss the implementation details, including constructing the sys-

tem matrix, setting attachment constraints, simulating anisotropic materials and tearing

effects, handling collision and damping etc.. A C++ implementation can be found on

https://github.com/ltt1598/Quasi-Newton-Methods-for-Real-time-Simulation-of-Hyperelastic-

Materials.

8.1 Construction of the Laplacian Matrix

The core of implementing our methods is to evaluate the system matrix M/h2 + L, where

M is the mass matrix, h is the time step and L is the Laplacian matrix of the system.

This matrix is used as the system matrix for the global step for mass-spring systems and

Projective Dynamics, and treated as a Hessian approximation in the quasi-Newton methods

for simulating general hyperelastic materials. In our implementation, we use a diagonally

lumped matrix to represent the nodal mass of the system. As long as the Laplacian matrix

L is evaluated, we can then compute the system matrix M/h2 + L.

For a mass spring system, the Laplacian matrix L is defined as:

L =
m∑
j=1

kjGjG
T
j (8.1)

69

https://github.com/ltt1598/Quasi-Newton-Methods-for-Real-time-Simulation-of-Hyperelastic-Materials
https://github.com/ltt1598/Quasi-Newton-Methods-for-Real-time-Simulation-of-Hyperelastic-Materials


where Gj ∈ Rn×1 is the incidence vector of the j-th spring, i.e. Gj(j1) = 1, Gj(j2) = −1

and zero otherwise, assuming j1 and j2 are the indices for the endpoints of the j-th spring.

Therefore the contribution of the Laplacian matrix L from the j-th spring can be explicitly

computed as:

j1 j2

Lj = kj



. . . . . . . . . . . . . . .

. . . 1 . . . −1 . . .

. . . . . . . . . . . . . . .

. . . −1 . . . 1 . . .

. . . . . . . . . . . . . . .


j1

j2

(8.2)

where only four elements corresponding to the indices of the endpoints of the j-th spring is

non-zero.

Eq. 8.2 is exactly a weighted graph Laplacian matrix where the weight is defined as the

stiffness of the spring. We simply sum up the contribution from each spring to construct

the Laplacian matrix: L =
∑m

j=1 Lj .

The laplacian matrix of a three dimensional finite element model is defined almost

the same L =
∑m

j=1 kjGjG
T
j , except for the definition of Gj matrix is overwritten as

Gj =
(
D−TmjAj

)T ∈ Rn×3. Here D−Tmj = [Xj1 − Xj4,Xj2 − Xj4,Xj3 − Xj4]
−T is the

inverse transpose of the rest-pose edge matrix of the j-th element, and Aj is defined in

Eq. 6.3. If we denote matrix D−1mjD
−T
mj as a matrix D:

D−1mjD
−T
mj = D =


d11 d12 d13

d21 d22 d23

d31 d32 d33

 (8.3)

70



we can compute the contribution from the j-th element as:

j1 j2 j3 j4

Lj = kjVj



. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . d11 . . . d12 . . . d13 . . . −
∑3

l=1 d1l . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . d21 . . . d22 . . . d23 . . . −
∑3

l=1 d2l . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . d31 . . . d32 . . . d33 . . . −
∑3

l=1 d3l . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . −
∑3

k=1 dk1 . . . −
∑3

k=1 dk2 . . . −
∑3

k=1 dk3 . . .
∑3

k,l=1 dkl . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .



j1

j2

j3

j4

(8.4)

where kj is the stiffness parameter and Vj is the rest-pose volume of the j-th element. For

nonlinear materials, the stiffness parameter k is evaluated according to Eq. 7.14 using

linear regression. For example, if we a pick Neo-Hookean model with xstart = 80% and

xend = 120%, we can compute the coresponding k = 2.0260µ + 1.0480λ where µ and

λ are second and first Lamé coefficients. Other than these 16 elements, every number in

this matrix Lj is zero. The overall Laplacian matrix of a finite element model is again:

L =
∑m

j=1 Lj .

8.2 Attachment Constraints

Attachment constraints are used to pin a vertex at a certain point, or to move a vertex

towards a wanted position. For example, the red dots in Figure 5.2 are the target positions

for the attachment constraints. In our implementation, attachment constraints are treated

as soft constraints which can be seen as zero-length springs with the following energy

representation:

Eattachment(x) =
kattachment

2
||x− xa||2 (8.5)

where kattachment is the stiffness of the attachment spring, x is the position of the attached

vertex and xa is the target position. Since Eattachment is a special energy with a constant
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Hessian matrix, we can simply encode the Hessian of an attachment spring into our Hessian

approximation:

i

Lattachment,i = kattachment,i


. . . . . . . . .

. . . 1 . . .

. . . . . . . . .

 i
(8.6)

where kattachment,i is the stiffness of an attachment spring attaching xi to a certain po-

sition. Lattachment,i is the contribution to the entire Laplacian matrix L in our Hessian

approximation M/h2 + L, like we did for mass-spring systems and FEM systems.

8.3 Anisotropic Materials

Our numerical methods, including the L-BFGS acceleration, can be directly applied also to

anisotropic material models. We verified this on an elastic cube model with corotated base

material enhanced with additional anisotropic stiffness term κ
2
(‖Fd‖ − 1)2, where F is the

deformation gradient and d is the (rest-pose) direction of anisotropy. This corresponds

to the directional reinforcement of the material which is common, e.g., in biological soft

tissues containing collagenous fibers. The Hessian matrix of an anisotropic material is

different from its x-, y- and z-directions, therefore it is not recommended to use the same

Hessian approximation for all three dimensions as we did in Chapter 7. However, since

our Hessian approximation M/h2 + L is guaranteed to be positive definite, the direction

−[M/h2+L]−1∇g(x) is guaranteed to be a descent direction as well. One way to make use

of our quasi-Newton acceleration is to ignore the Hessian contribution from the anisotropic

components of a material completely in the Hessian approximation. We incorporate the

information of an anisotropic material only in the objective energy and the gradient in Alg. 3.

This will approach will slightly slow down the convergence of our method, depending

on the stretch of the anisotropic components. The result of our method can be seen in

Figure 8.1.
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Figure 8.1: Dropping an elastic cube (µ = 10, λ = 100) on the ground. Left: deformation

using isotropic elasticity (linear corotated model). Right: the result after adding anisotropic

stiffness (κ = 50).

8.4 Tearing and Cutting

Tearing and cutting effects, as shown in Figure 8.2, change the topology of a mesh, therefore

change the corresponding Laplacian matrix as well. In our implementation, we simply

remove an element from the gradient and objective evaluation once decide that element

needs to be removed from the system during tearing. A straightforward idea to simulate

this effect is to update and re-factorize our Hessian approximation M/h2 + L after the

system detects the topological change. Note that only the Hessian components of those

elements along or on the cutting edges need to be updated. Therefore the computational

cost is not as expensive as re-computing the Hessian matrix. Another approach is to

ignore the topological change from the Hessian approximation after the tearing or cutting.

The rationale behind this approach is the same with how we treat anisotropic materials in

Section 8.3 – as long as we can always get a descent direction, all we need to pay is a slightly

higher number of iterations for using a less accurate Hessian approximation. To be more

specific, we remove the contribution from a “torn” element when computing the gradient

and objective in line 4 and line 10 of Alg. 3, while keeping the hessian approximation

M/h2 + L in line 5 the same. We use this approach to simulate the result in Figure 8.2
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in real time. We can also combine these two ideas together: observing that the tearing

and cutting effects are permanent once made, we can update the Hessian approximation

on a background thread, and update the topological change information to the foreground

simulation thread only when the background thread finishes the factorization of the updated

matrix.

Figure 8.2: Simulating a flag being torn apart by the wind.

8.5 Collisions

A classical approach to enforcing non-penetration constraints between deformable solids is

to 1) detect collisions and 2) resolve them using temporarily instantiated repulsion springs,

which bring the volume of undesired overlaps to zero [Harmon et al., 2011, McAdams

et al., 2011]. However, in Projective Dynamics the primary emphasis is on computational

efficiency and therefore only simplified collision resolution strategies have been proposed

by Bouaziz et al. [2014]. Specifically, Projective Dynamics offers two possible strategies.

The first strategy is a two-phase method, where collisions are resolved in a separate post-

processing step using projections, similar to Position Based Dynamics. The drawback of

this approach is the fact that collision projections are oblivious to elasticity and inertia of

the simulated objects. The second approach used in Projective Dynamics is more physically
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realistic, but introduces additional computational overhead. Specifically, temporarily-

instantiated repulsion springs are added to the total energy. This leads to physically realistic

results, but the drawback is that the matrix M/h2 + L needs to be re-factorized whenever

the set of repulsion springs is updated – typically, at the beginning of each frame.

The quasi-Newton interpretation invites a new approach to collision response which

is physically realistic, but avoids expensive re-factorizations. Specifically, for each inter-

penetration found by collision detection, we introduce an energy term:

Ecollision(x) =
kcollision

2
((x− xs)

Tn)2 (8.7)

where kcollision is the collision stiffness, x is a vertex being detected as a colliding vertex,

xs is its projection on the surface and n is the surface normal. This constraint pushes the

collided vertex to the tangent plane. It is important to add this term to our total energy E(x)

only if the vertex is in collision or contact. Whenever the relative velocity between the

vertex and the collider indicates separation, the Ecollision(x) term is discarded (otherwise it

would correspond to unrealistic “glue” forces). This is done once at the beginning of each

iteration (just before line 3 in Alg. 3). The rest of our algorithm (lines 6-10 of Alg. 3) is

unaffected by these updates, i.e., the unilateral nature of the collision constraints is handled

correctly without any further processing.

Figure 8.3: Our method is capable of simulating complex collision scenarios, such as

squeezing the Big Bunny through a torus. The Big Bunny uses corotated elasticity with

µ = 5 and λ = 200.
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The key idea of our approach is to leverage the quasi-Newton approximation for

collision processing. In particular, we account for the Ecollision(x) terms when evaluating

the energy and its gradients, but we ignore their contributions to the M/h2 + L matrix.

This means that we form a somewhat more aggressive approximation of the Hessian, with

the benefit that the system matrix will never need to be re-factorized. The line search

process (lines 6-10 in Alg. 3) guarantees that energy will decrease in spite of this more

aggressive approximation. The only trade-off we observed in our experiments is that the

number of line search iterations may increase, which is a small cost to pay for avoiding

re-factorizations. We observed that even in challenging collision scenarios, such as when

squeezing a Big Bunny through a torus, the approach behaves robustly and successfully

resolves all collisions, see Figure 8.3.

8.6 Damping

A simple method to introduce viscous damping into our formulation is as follows. Recall

that the term y from Eq. 3.30 is simply the result of inertia when all internal forces are

ignored, i.e., y = xn + hvn + h2M−1fext. Damping can be achieved simply by setting y

to xn + hṽn + h2M−1fext, where we replaced vn with a damped velocity ṽn. We use only

a very simple damping model—ether drag [Su et al., 2013], which sets ṽn := αvn, where

α ∈ [0, 1] is a parameter, typically very close to 1. However, any damping model can be

used with our method, such as the rigid-body modes preserving drag [Müller et al., 2007]

or truly material-only stiffness-proportional damping [Nealen et al., 2006].
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Chapter 9

Future Work

The key component underneath our methods from Chapter 5 to Chapter 7 is the constant

system matrix M/h2 + L. We evaluate and factorize this matrix once at the beginning of

the simulation, so that during the simulation when a linear system needs to be solved, we

only need to perform a forward and a backward substitution. This matrix dependents on the

nodal mass of a mesh, the time step size of the simulation (we usually use 33 ms for realtime

applications), the stiffness of each element and the topology of the system. We assume

all those quantities are unlikely to change during a simulation. This assumption forms the

foundation of all the accelerations we made to simulate deformable materials. But it might

be violated in some challenging cases where the speedup from our methods reduces. Our

system matrix can not encode the unpredictable information from time-varying events such

as collisions, tearing and cutting. Although several approaches are mentioned in Section 8.4

and Section 8.5, we are still looking for better numerical solutions.

Collision by itself is already a challenging problem. The classical model of repulsion

springs [McAdams et al., 2011] which we adopted in our implementation is analogous to

an active set method that adds / removes constraints during the iterations of the algorithm.

It is possible that this approach will end up cycling, however, we have never observed this

in practice. One possible workaround is to limit the number of iterations, possibly leaving

some collision constraints unresolved. In collision-dominant simulations, more advanced
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algorithms may be necessary. Another limitation is that in our current implementation,

we treat collisions as soft constraints with relatively stronger stiffness compared to the

elastic models. One possible way to resolve hard collision constraints is to use Lagrangian

multipliers, by solving the KKT system using its Schur complement [Ichim et al., 2016].

However, in cases with many collision constraints, the Schur complement becomes im-

practically large. Another possible approach to treating hard collision constraints is the

Augmented Lagrangian method [Deng et al., 2013]. Fast and robust collision resolution in

challenging scenarios is a problem which deserves significant attention in future work.

Another direction is to explore the possibility of parallelizing our methods. The local

step in Projective Dynamics or the gradient evaluation step in our quasi-Newton method is

trivially parallelizable. However we can parallelize the global step or the descent direction

evaluation step depends on the linear solver we choose. We currently rely on a constant

Cholesky factorization of our system matrix so that only forward and backward substitutions

are needed during the runtime. The substitutions are fast in a sequential implementation on

the CPU for moderate sized problems, but might not be the best solution for solving larger

systems in parallel because of two reasons. First, the forward and backward substitutions

are by nature sequential: each unknown can only be solved whenever all the unknowns

in the sub-triangle are solved. Second, the factorization of a sparse matrix, even with a

reasonable reordering, typically contains one or two magnitudes more non-zero elements

compared to the original matrix, making it hard to scale to gigantic systems. Recently,

Wang et al. [2015, 2016] use a Jacobi method on the GPU to solve Projective Dynamics

problems and further accelerate it using a Chebyshev semi-iterative method; Fratarcangeli

et al. [2016] accelerate the linear system solve in Projective Dynamics using a novel

graph-coloring approach to achieve fast Gauss-Seidel solves on the GPU. Both of them

show that iterative solvers could be the parallelization-friendly alternatives. The dotted

blue graph in Figure 7.7 shows that even in a CPU implementation, a conjugate gradient

(CG) method with only 15 iterations is not too worse compared to the solution obtained

by our pre-factorized direct solver. We believe that CG can be a competitive candidate for
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implementing our methods in parallel.

Integrating stiff or even rigid material is another challenging problem. In the real world,

deformable bodies usually do not exist on their own, but more commonly coupled with rigid

components. For example, in an anatomical simulation, deformable flesh is attached to rigid

bones, and simulating only deformable part would not be interesting enough. In theory,

one can modify our deformable body simulation framework to simulate stiff materials or

even rigid bodies by increasing the stiffness of the elements close to infinite. However, it

is numerically hard to simulate such kind materials efficiently. As shown in Figure 5.3,

the stiffness of the material affects the convergence of our method directly: the stiffer

material we simulate, the slower our solver will converge. Tournier et al. [2015] show that

an extremely stiff systems can not be simulated well even using Newton’s method. In order

to solve this problem, they propose a compliant constraint based framework, supporting

both soft elastic materials and hard constraints at the same time. However, the performance

of their work is still far away from the realtime requirement. We would like to explore fast

numerics for simulating stiff materials in the future.

Damping is a common physics phenomenon, simple post-processing damping models

are fast in the cost of plausibility. Ether drag [Su et al., 2013] reduces the linear and angular

momentum to a system. PBD damping [Müller et al., 2007] preserves the momentum

quantities, but in a non-physical way. Recently, Li et al. [2018] studies the matrix in

Projective Dynamics and proposes a Laplacian damping method, combining the efficiency

of our methods with an approximate model of Rayleigh damping. For completeness of our

method, we want to study a better damping method in the future.

Our current methods are designed for the backward Euler integration. But we do

not intend to limit our method with the backward Euler scheme. Applying our Hessian

approximation to Eq. 3.31 should allow us to accelerate implicit midpoint integration as

well. However, the implicit midpoint integration is not guaranteed to be stable under large

timesteps. Dinev et al. [2018] propose a method to stabilize implicit midpoint using a

Projective Dynamics solver. We believe that in order to achieve realistic simulations of
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deformable objects, a fast, stable yet not artificially damped time integration method is

worth exploring as well.
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Chapter 10

Conclusion

This thesis work summarizes the major projects I did during my Ph.D. study, from fast

simulation of mass spring systems [Liu et al., 2013], to Projective Dynamics [Bouaziz et al.,

2014], to a more general quasi-Newton simulation of a variety of different materials [Liu

et al., 2017]. The goal is to push the simulation of deformable body towards real-time.

Fast simulation of mass-spring systems [Liu et al., 2013] proposes a numerical method

for implicit Euler time stepping of mass-spring system dynamics. The technique is based on

block coordinate descent, which gives it different properties than the traditional Newton’s

method. The method can approximate the solution in a limited amount of computational

time, making it particularly attractive for real-time applications—we demonstrate real-time

cloth with quality similar to the exact solution. The proposed algorithm can also be useful

for quick simulation preview and for bootstrapping Newton’s method.

Projective Dynamics [Bouaziz et al., 2014] generalizes the idea of [Liu et al., 2013], sup-

porting more general spatial discretizations of deformable objects including finite element

discretizations.It introduces an implicit constraint-based solver for real-time simulation.

The approach is based on an abstract, constraint-based description of the physical system

making the method general in its use to simulate a large variety of different geometries and

materials. Projective Dynamics derives a broad set of constraints directly from continuous

energies using proper discretization that make the solver robust to non-uniform meshing
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with different resolutions.

Both [Liu et al., 2013] and [Bouaziz et al., 2014] apply a local/global solver to solve

their numerical problems. The solver only requires the definition of a projection operator

for a given constraints (local solve), making it very easy to implement. Furthermore, the

global solve only requires solving a linear system, where the system matrix M/h2 + L is

constant if the number of constraints is kept fixed, leading to efficient computation. Due to

the independence of the local solves, the approach is also very well suited for parallelism,

further boosting performance.

The quasi-Newton methods for real-time simulation of hyperelastic materials [Liu et al.,

2017] further broadens the supported materials from Projective Dynamics [Bouaziz et al.,

2014] and improves the convergence of the numerical solver. The key to this approach is the

insight that Projective Dynamics can be re-formulated as a quasi-Newton method. Aided

with line search, this work obtains a robust simulator supporting many practical material

models. The quasi-Newton formulation also allows us to further accelerate convergence

by combining itself with L-BFGS. Even though L-BFGS is sensitive to initial Hessian

approximation, the prior knowledge we gained from [Liu et al., 2013] and [Bouaziz et al.,

2014] suggests a particularly effective Hessian initialization M/h2 + L which yields fast

convergence. Most of the experiments use ten iterations of quasi-Newton iterations which

is typically more accurate than one iteration of Newton’s method, while being about ten

times faster and easier to implement.

I wish that these methods will encourage further investigation of time integration

techniques and the underlying nonlinear numerical problems. Traditionally, real-time

physics is considered to be approximate but fast, while off-line physics is accurate but slow.

By keeping improving the performance and accuracy of the solver, I hope our work will

eventually blur the boundary between real-time and off-line physically-based simulations

of deformable objects.
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finite elements. ACM Trans. Graph., 33(3):27, 2014. 28

Klaus Jürgen Bathe and Arthur P Cimento. Some practical procedures for the solution

of nonlinear finite element equations. Computer Methods in Applied Mechanics and

Engineering, 22:59–85, 1980. 7

Jan Bender, Dan Koschier, Patrick Charrier, and Daniel Weber. Position-based simulation

of continuous materials. Computers & Graphics, 44:1–10, 2014a. 8

Jan Bender, Matthias Müller, Miguel A Otaduy, Matthias Teschner, and Miles Macklin. A

survey on position-based simulation methods in computer graphics. In Comput. Graph.

Forum, volume 33, pages 228–251, 2014b. 8

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. Projective

83



dynamics: fusing constraint projections for fast simulation. ACM Transactions on

Graphics (TOG), 33(4):154, 2014. 74, 81, 82

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,

2004. 6, 25, 40

Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. A simple geometric model
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